

ptg

Windows System
Programming

 Fourth Edition

Johnson M. Hart

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed in initial capital letters
or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no ex-
pressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and con-
tent particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Hart, Johnson M.
 Windows system programming / Johnson M. Hart.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-321-65774-9 (hardback : alk. paper)
 1. Application software—Development. 2. Microsoft Windows (Computer file). 3. Applica-
tion program interfaces (Computer software). I. Title.

 QA76.76.A65H373 2010
 005.3—dc22

2009046939

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-65774-9
ISBN-10: 0-321-65774-8
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, February 2010

ptg

To Andrew and William

ptg

This page intentionally left blank

ptg

vii

Contents

Figures xvii

Tables xix

Programs xxi

Program Runs xxv

Preface xxvii

About the Author xxxvii

CHAPTER 1 Getting Started with Windows 1
Operating System Essentials 1

Windows Evolution 2

Windows Versions 3

The Windows Market Role 5

Windows, Standards, and Open Systems 6

Windows Principles 7

32-bit and 64-bit Source Code Portability 10

The Standard C Library: When to Use It for
File Processing 10

What You Need to Use This Book 11

Example: A Simple Sequential File Copy 13

Summary 20

Exercises 22

CHAPTER 2 Using the Windows File System and
Character I/O 25
The Windows File Systems 26

File Naming 27

ptg

viii C O N T E N T S

Opening, Reading, Writing, and Closing Files 28

Interlude: Unicode and Generic Characters 34

Unicode Strategies 37

Example: Error Processing 38

Standard Devices 39

Example: Copying Multiple Files to Standard Output 41

Example: Simple File Encryption 43

File and Directory Management 46

Console I/O 51

Example: Printing and Prompting 53

Example: Printing the Current Directory 55

Summary 56

Exercises 57

CHAPTER 3 Advanced File and Directory Processing,
and the Registry 59
The 64-Bit File System 59

File Pointers 60

Getting the File Size 64

Example: Random Record Updates 65

File Attributes and Directory Processing 70

Example: Listing File Attributes 75

Example: Setting File Times 78

File Processing Strategies 80

File Locking 81

The Registry 86

Registry Management 88

Example: Listing Registry Keys and Contents 92

Summary 96

Exercises 97

ptg

C O N T E N T S ix

CHAPTER 4 Exception Handling 101
Exceptions and Their Handlers 101

Floating-Point Exceptions 108

Errors and Exceptions 110

Example: Treating Errors as Exceptions 112

Termination Handlers 113

Example: Using Termination Handlers to
Improve Program Quality 117

Example: Using a Filter Function 120

Console Control Handlers 124

Example: A Console Control Handler 126

Vectored Exception Handling 128

Summary 129

Exercises 130

CHAPTER 5 Memory Management, Memory-Mapped Files,
and DLLs 131
Windows Memory Management Architecture 132

Heaps 134

Managing Heap Memory 137

Example: Sorting Files with a Binary Search Tree 143

Memory-Mapped Files 149

Example: Sequential File Processing with Mapped Files 156

Example: Sorting a Memory-Mapped File 158

Example: Using Based Pointers 162

Dynamic Link Libraries 167

Example: Explicitly Linking a File Conversion Function 172

The DLL Entry Point 174

DLL Version Management 175

Summary 177

Exercises 178

ptg

x C O N T E N T S

CHAPTER 6 Process Management 181
Windows Processes and Threads 181

Process Creation 183

Process Identities 190

Duplicating Handles 191

Exiting and Terminating a Process 192

Waiting for a Process to Terminate 194

Environment Blocks and Strings 195

Example: Parallel Pattern Searching 197

Processes in a Multiprocessor Environment 201

Process Execution Times 202

Example: Process Execution Times 202

Generating Console Control Events 204

Example: Simple Job Management 205

Example: Using Job Objects 215

Summary 219

Exercises 220

CHAPTER 7 Threads and Scheduling 223
Thread Overview 223

Thread Basics 225

Thread Management 226

Using the C Library in Threads 231

Example: Multithreaded Pattern Searching 232

Performance Impact 235

The Boss/Worker and Other Threading Models 236

Example: Merge-Sort—Exploiting Multiple Processors 237

Introduction to Program Parallelism 244

Thread Local Storage 245

Process and Thread Priority and Scheduling 246

Thread States 249

ptg

C O N T E N T S xi

Pitfalls and Common Mistakes 251

Timed Waits 252

Fibers 253

Summary 256

Exercises 256

CHAPTER 8 Thread Synchronization 259
The Need for Thread Synchronization 259

Thread Synchronization Objects 268

 Objects 269

A for Protecting Shared Variables 271

Example: A Simple Producer/Consumer System 273

Mutexes 279

Semaphores 284

Events 287

Example: A Producer/Consumer System 289

More Mutex and Guidelines 294

More Interlocked Functions 296

Memory Management Performance Considerations 297

Summary 298

Exercises 298

CHAPTER 9 Locking, Performance, and
NT6 Enhancements 301
Synchronization Performance Impact 302

A Model Program for Performance Experimentation 307

Tuning Multiprocessor Performance with CS Spin
Counts 307

NT6 Slim Reader/Writer Locks 309

Thread Pools to Reduce Thread Contention 312

I/O Completion Ports 316

NT6 Thread Pools 316

ptg

xii C O N T E N T S

Summary: Locking Performance 324

Parallelism Revisited 325

Processor Affinity 329

Performance Guidelines and Pitfalls 331

Summary 332

Exercises 333

CHAPTER 10 Advanced Thread Synchronization 335
The Condition Variable Model and Safety Properties 336

Using 342

Example: A Threshold Barrier Object 344

A Queue Object 348

Example: Using Queues in a Multistage Pipeline 352

Windows NT6 Condition Variables 362

Asynchronous Procedure Calls 366

Queuing Asynchronous Procedure Calls 367

Alertable Wait States 368

Safe Thread Cancellation 371

Pthreads for Application Portability 372

Thread Stacks and the Number of Threads 372

Hints for Designing, Debugging, and Testing 372

Beyond the Windows API 375

Summary 375

Exercises 376

CHAPTER 11 Interprocess Communication 379
Anonymous Pipes 380

Example: I/O Redirection Using an Anonymous Pipe 380

Named Pipes 384

Named Pipe Transaction Functions 390

Example: A Client/Server Command Line Processor 393

ptg

C O N T E N T S xiii

Comments on the Client/Server
Command Line Processor 399

Mailslots 401

Pipe and Mailslot Creation, Connection,
and Naming 405

Example: A Server That Clients Can Locate 406

Summary 408

Exercises 408

CHAPTER 12 Network Programming with Windows Sockets 411
Windows Sockets 412

Socket Server Functions 414

Socket Client Functions 419

Comparing Named Pipes and Sockets 421

Example: A Socket Message Receive Function 422

Example: A Socket-Based Client 423

Example: A Socket-Based Server with New Features 426

In-Process Servers 434

Line-Oriented Messages, DLL Entry Points, and TLS 436

Example: A Thread-Safe DLL for Socket Messages 437

Example: An Alternative Thread-Safe DLL Strategy 442

Datagrams 445

Berkeley Sockets versus Windows Sockets 447

Overlapped I/O with Windows Sockets 447

Windows Sockets Additional Features 448

Summary 448

Exercises 449

CHAPTER 13 Windows Services 453
Writing Windows Services—Overview 454

The Function 454

 Functions 455

ptg

xiv C O N T E N T S

The Service Control Handler 460

Event Logging 461

Example: A Service “Wrapper” 461

Managing Windows Services 467

Summary: Service Operation and Management 471

Example: A Service Control Shell 472

Sharing Kernel Objects with a Service 476

Notes on Debugging a Service 477

Summary 478

Exercises 478

CHAPTER 14 Asynchronous Input/Output and
Completion Ports 481
Overview of Windows Asynchronous I/O 482

Overlapped I/O 483

Example: Synchronizing on a File Handle 487

Example: File Conversion with
Overlapped I/O and Multiple Buffers 487

Extended I/O with Completion Routines 492

Example: File Conversion with Extended I/O 496

Asynchronous I/O with Threads 500

Waitable Timers 501

Example: Using a Waitable Timer 503

I/O Completion Ports 505

Example: A Server Using I/O Completion Ports 509

Summary 516

Exercises 517

CHAPTER 15 Securing Windows Objects 519
Security Attributes 519

Security Overview: The Security Descriptor 520

Security Descriptor Control Flags 523

ptg

C O N T E N T S xv

Security Identifiers 523

Managing ACLs 525

Example: UNIX-Style Permission for NTFS Files 527

Example: Initializing Security Attributes 531

Reading and Changing Security Descriptors 535

Example: Reading File Permissions 537

Example: Changing File Permissions 538

Securing Kernel and Communication Objects 539

Example: Securing a Process and Its Threads 541

Overview of Additional Security Features 542

Summary 544

Exercises 544

APPENDIX A Using the Sample Programs 547
Examples File Organization 548

APPENDIX B Source Code Portability:
Windows, UNIX, and Linux 549
Source Code Portability Strategies 550

Windows Services for UNIX 550

Source Code Portability for Windows Functionality 551

Chapters 2 and 3: File and Directory Management 556

Chapter 4: Exception Handling 561

Chapter 5: Memory Management, Memory-Mapped Files,
and DLLs 562

Chapter 6: Process Management 563

Chapter 7: Threads and Scheduling 565

Chapters 8–10: Thread Synchronization 567

Chapter 11: Interprocess Communication 569

Chapter 14: Asynchronous I/O 571

Chapter 15: Securing Windows Objects 572

ptg

xvi C O N T E N T S

APPENDIX C Performance Results 575
Test Configurations 575

Performance Measurements 577

Running the Tests 591

Bibliography 593

Index 597

ptg

xvii

Figures

3–1 The Registry Editor 87

4–1 SEH, Blocks, and Functions 103

4–2 Exception Handling Sequence 108

5–1 Windows Memory Management Architecture 133

5–2 Memory Management in Multiple Heaps 144

5–3 A File Mapped into Process Address Space 153

5–4 Shared Memory 154

5–5 Sorting with a Memory-Mapped Index File 163

6–1 A Process and Its Threads 183

6–2 Process Handle Tables 189

6–3 File Searching Using Multiple Processes 198

7–1 Threads in a Server Environment 226

7–2 Merge-Sort with Multiple Threads 238

7–3 Thread Local Storage within a Process 245

7–4 Thread States and Transitions 250

7–5 Control Flow among Fibers in a Thread 255

8–1 Unsynchronized Threads Sharing Memory 261

8–2 Memory System Architecture 264

8–3 Synchronized Threads Sharing Memory 272

10–1 Multistage Pipeline 353

11–1 Process-to-Process Communication Using an Anonymous Pipe 381

11–2 Clients and Servers Using Named Pipes 385

11–3 Clients Using a Mailslot to Locate a Server 403

13–1 Controlling Windows Services through the SCM 471

ptg

xviii F I G U R E S

14–1 An Asynchronous File Update Model 488

14–2 Asynchronous I/O with Completion Routines 496

15–1 Constructing a Security Descriptor 521

ptg

xix

Tables

3–1 Lock Request Logic 83

3–2 Locks and I/O Operation 84

8–1 Summary of Event Behavior 289

8–2 Comparison of Windows Synchronization Objects 293

9–1 Mutex and CS Performance with Multiple Processors 306

11–1 Named Pipes: Creating, Connecting, and Naming 405

11–2 Mailslots: Creating, Connecting, and Naming 405

13–1 Service Types 458

13–2 Service State Values 459

13–3 Controls That a Service Accepts (Partial List) 459

B–1 Chapters 2 and 3: File and Directory Management 556

B–2 Chapter 4: Exception Handling 561

B–3 Chapter 5: Memory Management, Memory-Mapped Files,
and DLLs 562

B–4 Chapter 6: Process Management 563

B–5 Chapter 7: Threads and Scheduling 565

B–6 Chapters 8–10: Thread Synchronization 567

B–7 Chapter 11: Interprocess Communication 569

B–8 Chapter 14: Asynchronous I/O 571

B–9 Chapter 15: Securing Windows Objects 572

C–1 File Copy Performance 580

C–2 File Conversion Performance 582

C–3 Word Counting Performance 584

C–4 Random File Record Access 586

C–5 Locking Performance 588

C–6 Multithreaded Pipeline Performance on a Four-Processor Desktop 590

ptg

This page intentionally left blank

ptg

xxi

Programs

1–1 File Copying with the C Library 13

1–2 File Copying with Windows, First Implementation 17

1–3 File Copying with a Windows Convenience Function 19

2–1 Reporting System Call Errors 39

2–2 File Concatenation to Standard Output 41

2–3 File Encryption with Error Reporting 44

2–4 File Conversion Function 45

2–5 Console Prompt and Print Utility Functions 54

2–6 Printing the Current Directory 55

3–1 Direct File Access 66

3–2 File Listing and Directory Traversal 75

3–3 Setting File Times 79

3–4 Listing Registry Keys and Contents 92

4–1 Exception Reporting Function 112

4–2 File Processing with Error and Exception Recovery 118

4–3 Processing Exceptions and Termination 121

4–4 Exception Filtering 123

4–5 Signal Handling Program 126

5–1 Sorting with a Binary Search Tree 145

5–2 Tree Management Functions 147

5–3 File Conversion with Memory Mapping 157

5–4 Sorting a File with Memory Mapping 159

5–5 Based Pointers in an Index File 163

5–6 Creating the Index File 165

5–7 File Conversion with Explicit Linking 173

ptg

xxii P R O G R A M S

6–1 Parallel Searching 198

6–2 Process Times 203

6–3 Create, List, and Kill Background Jobs 206

6–4 Creating New Job Information 209

6–5 Displaying Active Jobs 211

6–6 Getting the Process ID from a Job Number 212

6–7 Monitoring Processes with a Job Object 217

7–1 Multithreaded Pattern Searching 233

7–2 Merge-Sort with Multiple Threads 239

8–1 A Simple Producer and Consumer 274

8–2 A Signaling Producer and Consumer 290

9–1 Maintaining Thread Statistics 303

9–2 Thread Performance with a Thread Pool 320

10–1 Part 1—Threshold Barrier Definitions 345

10–2 Implementing the Threshold Barrier 345

10–3 Part 2—Queue Definitions 348

10–4 The Queue Management Functions 349

10–5 A Multistage Pipeline 354

10–6 The Queue Management Functions 363

10–7 Queue Functions Modified for Cancellation 369

11–1 Interprocess Communication 381

11–2 Named Pipe Connection-Oriented Client 393

11–3 Multithreaded Named Pipe Server Program 395

11–4 Mailslot Client Thread Function 406

11–5 Mailslot Server 407

12–1 Socket-Based Client 424

12–2 Socket-Based Server with In-Process Servers 427

12–3 : Server Thread Code 431

12–4 Sample In-Process Servers 435

ptg

P R O G R A M S xxiii

12–5 Thread-Safe DLL 438

12–6 Thread-Safe DLL with a State Structure 443

13–1 The Main Service Entry Point 455

13–2 A Service Wrapper 462

13–3 A Service Control Program 472

14–1 File Conversion with Overlapped I/O 488

14–2 File Conversion with Extended I/O 497

14–3 A Periodic Signal 503

14–4 A Server Using a Completion Port 510

15–1 Change File Permissions 528

15–2 List File Permissions 530

15–3 Initializing Security Attributes 532

15–4 Reading Security Attributes 537

15–5 Changing Security Attributes 539

15–6 Securing a Named Pipe 540

ptg

This page intentionally left blank

ptg

xxv

Program Runs

1–1 Execution and Test 15

1–2 Execution and Test 18

1–3 Execution and Test, with Timing 20

2–2 Results, with Output 43

2–3 Caesar Cipher Run and Test 45

2–6 Determining the Current Directory 56

3–1 Writing, Reading, and Deleting Records 69

3–2 Listing Files and Directories 78

3–3 Changing File Time and Creating New Files 79

3–4 Listing Registry Keys, Values, and Data 96

4–2 Converting Text Files to Uppercase 120

4–4 Exception Filtering 124

4–5 Interrupting Program Execution from the Console 128

5–2 Sorting Small and Large Text Files 148

5–3 File Conversion with Memory-Mapped Files 159

5–4 Sorting in Memory with File Mapping 161

5–6 Sorting Using Based Pointers and Mapping 166

5–7 Explicit Linking to a DLL 174

6–1 Parallel Searching 200

6–6 Managing Multiple Processes 213

6–7 Monitoring Processes with a Job Object 216

7–1 Multithreaded Pattern Searching 235

7–2a Sorting with Multiple Threads 242

7–2b Sorting with Multiple Threads and a Larger File 243

ptg

xxvi P R O G R A M R U N S

8–1 Periodic Messages, Consumed on Demand 277

8–2 Producing and Consuming Messages 292

9–1a Performance with Different Locking Techniques 305

9–1b Comparing SRW and CS Performance 312

9–1c Using a Semaphore Throttle 315

9–2 Using a Thread Pool, Fast and Slow Workers 322

10–2 Testing the Threshold Barrier Functions 347

10–5a Mutex Broadcast and Signaling 360

10–5b CS Broadcast and Signaling 361

10–6 Condition Variable and CS Performance 366

11–1 Using an Anonymous Pipe 383

11–3 Servicing Several Clients 400

11–4 Client Commands and Results 401

12–1 Socket Client Operation 425

12–3 Requests from Several Clients 433

13–2a Controlled by 466

13–2b The Log File 467

13–3 Managing Services 476

14–1 Comparing Performance and Testing Results 491

14–2 Overlapped I/O with Completion Routines 499

15–2 UNIX-like File Permissions 531

ptg

xxvii

Preface

This book describes application development using the Microsoft Windows Appli-
cation Programming Interface (API), concentrating on the core system services,
including the file system, process and thread management, interprocess communi-
cation, network programming, and synchronization. The examples concentrate on
realistic scenarios, and in many cases they’re based on real applications I’ve en-
countered in practice.

The Win32/Win64 API, or the Windows API, is supported by Microsoft’s family
of 32-bit and 64-bit operating systems; versions currently supported and widely
used include Windows 7, XP, Vista, Server 2003, Server 2008, and CE. Older Win-
dows family members include Windows 2000, NT, Me, 98, and 95; these systems are
obsolete, but many topics in this book still apply to these older systems.

The Windows API is an important factor for application development, fre-
quently replacing the POSIX API (supported by UNIX and Linux) as the preferred
API for applications targeted at desktop, server, and embedded systems now and
for the indefinite future. Many programmers, regardless of experience level, need
to learn the Windows API quickly, and this book is designed for them to do so.

Objectives and Approach

The objectives I’ve set for the book are to explain what Windows is, show how to
use it in realistic situations, and do so as quickly as possible without burdening
you with unnecessary detail. This book is not a reference guide, but it explains the
central features of the most important functions and shows how to use them to-
gether in practical programming situations. Equipped with this knowledge, you
will be able to use the comprehensive Microsoft reference documentation to ex-
plore details, advanced options, and the more obscure functions as requirements
or interests dictate. I have found the Windows API easy to learn using this
approach and have greatly enjoyed developing Windows programs, despite
occasional frustration. This enthusiasm will show through at times, as it should.
This does not mean that I feel that Windows is necessarily better than other
operating system (OS) APIs, but it certainly has many attractive features and im-
proves significantly with each major new release.

Many Windows books spend a great deal of time explaining how processes, virtual
memory, interprocess communication, and preemptive scheduling work without
showing how to use them in realistic situations. A programmer experienced in UNIX,
Linux, IBM MVS, or another OS will be familiar with these concepts and will be

ptg

xxviii P R E F A C E

impatient to find out how they are implemented in Windows. Most Windows books
also spend a great deal of space on the important topic of user interface programming.
This book intentionally avoids the user interface, beyond discussing simple character-
based console I/O, in the interest of concentrating on the important core features.

I’ve taken the point of view that Windows is just an OS API, providing a well-
understood set of features. Many programmers, regardless of experience level,
need to learn Windows quickly. Furthermore, understanding the Windows API is
invaluable background for programmers developing for the Microsoft .NET
Framework.

The Windows systems, when compared with other systems, have good, bad,
and average features and quality. Recent releases (Windows 7, Vista, Server
2008) provide new features, such as condition variables, that both improve perfor-
mance and simplify programming. The purpose of this book is to show how to use
those features efficiently and in realistic situations to develop practical, high-
quality, and high-performance applications.

Audience

I’ve enjoyed receiving valuable input, ideas, and feedback from readers in all
areas of the target audience, which includes:

• Anyone who wants to learn about Windows application development quickly,
regardless of previous experience.

• Programmers and software engineers who want to port existing Linux or
UNIX (the POSIX API) applications to Windows. Frequently, the source code
must continue to support POSIX; that is, source code portability is a require-
ment. The book frequently compares Windows, POSIX, and standard C
library functions and programming models.

• Developers starting new projects who are not constrained by the need to port
existing code. Many aspects of program design and implementation are
covered, and Windows functions are used to create useful applications and to
solve common programming problems.

• Application architects and designers who need to understand Windows
capabilities and principles.

• Programmers using COM and the .NET Framework, who will find much of
the information here helpful in understanding topics such as dynamic link
libraries (DLLs), thread usage and models, interfaces, and synchronization.

• Computer science students at the upper-class undergraduate or beginning
graduate level in courses covering systems programming or application devel-

ptg

P R E F A C E xxix

opment. This book will also be useful to those who are learning multithreaded
programming or need to build networked applications. This book would be a
useful complementary text to a classic book such as Advanced Programming
in the UNIX Environment (by W. Richard Stevens and Stephen A. Rago) so
that students could compare Windows and UNIX. Students in OS courses will
find this book to be a useful supplement because it illustrates how a commer-
cially important OS provides essential functionality.

The only other assumption, implicit in all the others, is a knowledge of C or C++
programming.

Windows Progress Since the Previous Editions

The first edition of this book, titled Win32 System Programming, was published in
1997 and was updated with the second edition (2000) and the third edition (2004).
Much has changed, and much has stayed the same since these previous editions,
and Windows has been part of ongoing, rapid progress in computing technology.
The outstanding factors to me that explain the fourth edition changes are the
following:

• The Windows API is extremely stable. Programs written in 1997 continue to
run on the latest Windows releases, and Windows skills learned now or even
years ago will be valuable for decades to come.

• Nonetheless, the API has expanded, and there are new features and functions
that are useful and sometimes mandatory. Three examples of many that come
to mind and have been important in my work are (1) the ability to work easily
with large files and large, 64-bit address spaces, (2) thread pools, and (3) the
new condition variables that efficiently solve an important synchronization
problem.

• Windows scales from phones to handheld and embedded devices to laptops
and desktop systems and up to the largest servers.

• Windows has grown and scaled from the modest resources required in 1997
(16MB of RAM and 250MB of free disk space!) to operate efficiently on sys-
tems orders of magnitude larger and faster but often cheaper.

• 64-bit systems, multicore processors, and large file systems are common, and
our application programs must be able to exploit these systems. Frequently,
the programs must also continue to run on 32-bit systems.

ptg

xxx P R E F A C E

Changes in the Fourth Edition

This fourth edition presents extensive new material along with updates and reor-
ganization to keep up with recent progress and:

• Covers important new features in Windows 7, Vista, and Server 2008.

• Demonstrates example program operation and performance with screenshots.

• Describes and illustrates techniques to assure that relevant applications scale
to run on 64-bit systems and can use large files. Enhancements throughout
the book address this issue.

• Eliminates discussion of Windows 95, 98, and Me (the “Windows 9x” family), as
well as NT and other obsolete systems. Program examples freely exploit features
supported only in current Windows versions.

• Provides enhanced coverage of threads, synchronization, and parallelism, in-
cluding performance, scalability, and reliability considerations.

• Emphasizes the important role and new features of Windows servers running
high-performance, scalable, multithreaded applications.

• Studies performance implications of different program designs, especially in file
access and multithreaded applications with synchronization and parallel
programs running on multicore systems.

• Addresses source code portability to assure operation on Windows, Linux, and
UNIX systems. Appendix B is enhanced from the previous versions to help
those who need to build code, usually for server applications, that will run on
multiple target platforms.

• Incorporates large quantities of excellent reader and reviewer feedback to fix
defects, improve explanations, improve the organization, and address
numerous details, large and small.

Organization

Chapters are organized topically so that the features required in even a single-
threaded application are covered first, followed by process and thread management
features, and finally network programming in a multithreaded environment. This
organization allows you to advance logically from file systems to memory manage-
ment and file mapping, and then to processes, threads, and synchronization, fol-
lowed by interprocess and network communication and security. This organization
also allows the examples to evolve in a natural way, much as a developer might cre-

ptg

P R E F A C E xxxi

ate a simple prototype and then add additional capability. The advanced features,
such as asynchronous I/O and security, appear last.

Within each chapter, after introducing the functionality area, such as process
management or memory-mapped files, we discuss important Windows functions
and their relationships in detail. Illustrative examples follow. Within the text, only
essential program segments are listed; complete projects, programs, include files,
utility functions, and documentation are on the book’s Web site (www.jmhartsoft-
ware.com). Throughout, we identify those features supported only by current Win-
dows versions. Each chapter suggests related additional reading and gives some
exercises. Many exercises address interesting and important issues that did not fit
within the normal text, and others suggest ways for you to explore advanced or spe-
cialized topics.

Chapter 1 is a high-level introduction to the Windows OS family and
Windows. A simple example program shows the basic elements of Windows
programming style and lays the foundation for more advanced Windows features.
Win64 compatibility issues are introduced in Chapter 1 and are included
throughout the book.

Chapters 2 and 3 deal with file systems, console I/O, file locking, and directory
management. Unicode, the extended character set used by Windows, is also
introduced in Chapter 2. Examples include sequential and direct file processing,
directory traversal, and management. Chapter 3 ends with a discussion of
registry management programming, which is analogous in many ways to file and
directory management.

Chapter 4 introduces Windows exception handling, including Structured
Exception Handling (SEH), which is used extensively throughout the book. By
introducing it early, we can use SEH throughout and simplify some programming
tasks and improve quality. Vectored exception handling is also described.

Chapter 5 treats Windows memory management and shows how to use
memory-mapped files both to simplify programming and to improve performance.
This chapter also covers DLLs. An example compares memory-mapped file access
performance and scalability to normal file I/O on both 32-bit and 64-bit systems.

Chapter 6 introduces Windows processes, process management, and simple
process synchronization. Chapter 7 then describes thread management in similar
terms and introduces parallelism to exploit multiprocessor systems. Examples in
each chapter show the many benefits of using threads and processes, including
program simplicity and performance.

Chapters 8, 9, and 10 give an extended, in-depth treatment of Windows thread
synchronization, thread pools, and performance considerations. These topics are
complex, and the chapters use extended examples and well-understood models to
help you obtain the programming and performance benefits of threads while
avoiding the numerous pitfalls. New material covers new functionality along with

www.jmhartsoftware.com
www.jmhartsoftware.com

ptg

xxxii P R E F A C E

performance and scalability issues, which are important when building server-
based applications, including those that will run on multiprocessor systems.

Chapters 11 and 12 are concerned with interprocess and interthread
communication and networking. Chapter 11 concentrates on the features that are
properly part of Windows—namely, anonymous pipes, named pipes, and
mailslots. Chapter 12 discusses Windows Sockets, which allow interoperability
with non-Windows systems using industry-standard protocols, primarily TCP/IP.
Windows Sockets, while not strictly part of the Windows API, provide for network
and Internet communication and interoperability, and the subject matter is
consistent with the rest of the book. A multithreaded client/server system
illustrates how to use interprocess communication along with threads.

Chapter 13 describes how Windows allows server applications, such as the
ones created in Chapters 11 and 12, to be converted to Windows Services that can
be managed as background servers. Some small programming changes will turn
the servers into services.

Chapter 14 shows how to perform asynchronous I/O using overlapped I/O with
events and completion routines. You can achieve much the same thing with threads,
so examples compare the different solutions for simplicity and performance. In par-
ticular, as of Windows Vista, completion routines provide very good performance.
The closely related I/O completion ports are useful for some scalable multithreaded
servers, so this feature is illustrated with the server programs from earlier chap-
ters. The final topic is waitable timers, which require concepts introduced earlier in
the chapter.

Chapter 15 briefly explains Windows object security, showing, in an example,
how to emulate UNIX-style file permissions. Additional examples shows how to
secure processes, threads, and named pipes. Security upgrades can then be
applied to the earlier examples as appropriate.

There are three appendixes. Appendix A describes the example code that you
can download from the book’s Web site (www.jmhartsoftware.com). Appendix B
shows how to create source code that can also be built to run on POSIX (Linux and
UNIX) systems; this requirement is common with server applications and organi-
zations that need to support systems other than just Windows. Appendix C com-
pares the performance of alternative implementations of some of the text
examples so that you can gauge the trade-offs between Windows features, both ba-
sic and advanced.

UNIX and C Library Notes and Tables

Within the text at appropriate points, we contrast Windows style and functional-
ity with the comparable POSIX (UNIX and Linux) and ANSI Standard C library
features. Appendix B reviews source code portability and also contains a table list-

www.jmhartsoftware.com

ptg

P R E F A C E xxxiii

ing these comparable functions. This information is included for two principal rea-
sons:

• Many people are familiar with UNIX or Linux and are interested in the com-
parisons between the two systems. If you don’t have a UNIX/Linux back-
ground, feel free to skip those paragraphs in the text, which are indented and
set in a smaller font.

• Source code portability is important to many developers and organizations.

Examples

The examples are designed to:

• Illustrate common, representative, and useful applications of the Windows
functions.

• Correspond to real programming situations encountered in program develop-
ment, consulting, and training. Some of my clients and course participants have
used the code examples as the bases for their own systems. During consulting
activities, I frequently encounter code that is similar to that used in the
examples, and on several occasions I have seen code taken directly or modified
from previous editions. (Feel free to do so yourself; an acknowledgment in your
documentation would be greatly appreciated.) Frequently, this code occurs as
part of COM, .NET, or C++ objects. The examples, subject to time and space con-
straints, are “real-world” examples and solve “real-world” problems.

• Emphasize how the functions actually behave and interact, which is not
always as you might first expect after reading the documentation. Throughout
this book, the text and the examples concentrate on interactions between
functions rather than on the functions themselves.

• Grow and expand, both adding new capability to a previous solution in a
natural manner and exploring alternative implementation techniques.

• Implement UNIX/Linux commands, such as , , , and ,
showing the Windows functions in a familiar context while creating a useful
set of utilities.1 Different implementations of the same command also give us

1 Several commercial and open source products provide complete sets of UNIX/Linux utilities; there is
no intent to supplement them. These examples, although useful, are primarily intended to illustrate
Windows usage. Anyone unfamiliar with UNIX or Linux should not, however, have any difficulty un-
derstanding the programs or their functionality.

ptg

xxxiv P R E F A C E

an easy way to compare performance benefits available with advanced
Windows features. Appendix C contains the performance test results.

Examples in the early chapters are usually short, but the later chapters
present longer examples when appropriate.

Exercises at the end of each chapter suggest alternative designs, subjects for
investigation, and additional functionality that is important but beyond the book’s
scope. Some exercises are easy, and a few are very challenging. Frequently, clearly
labeled defective solutions are provided, because fixing the bugs is an excellent
way to sharpen skills.

All examples have been debugged and tested under Windows 7, Vista, Server
2008, XP, and earlier systems. Testing included 32-bit and 64-bit versions. All
programs were also tested on both single-processor and multiprocessor systems
using as many as 16 processors. The client/server applications have been tested
using multiple clients simultaneously interacting with a server. Nonetheless,
there is no guarantee or assurance of program correctness, completeness, or
fitness for any purpose. Undoubtedly, even the simplest examples contain defects
or will fail under some conditions; such is the fate of nearly all software. I will,
however, gratefully appreciate any messages regarding program defects—and,
better still, fixes, and I’ll post this information on the book’s Web site so that
everyone will benefit.

The Web Site

The book’s Web site (www.jmhartsoftware.com) contains a downloadable Exam-
ples file with complete code and projects for all the book’s examples, a number of
exercise solutions, alternative implementations, instructions, and performance
evaluation tests. This material will be updated periodically to include new mate-
rial and corrections.

The Web site also contains book errata, along with additional examples,
reader contributions, additional explanations, and much more. The site also con-
tains PowerPoint slides that can be used for noncommercial instructional pur-
poses. I’ve used these slides numerous times in professional training courses, and
they are also suitable for college courses.

The material will be updated as required when defects are fixed and as new
input is received. If you encounter any difficulties with the programs or any
material in the book, check these locations first because there may already be a fix
or explanation. If that does not answer your question, feel free to send e-mail to

 or .

www.jmhartsoftware.com

ptg

P R E F A C E xxxv

Acknowledgments

Numerous people have provided assistance, advice, and encouragement during the
fourth edition’s preparation, and readers have provided many important ideas and
corrections. The Web site acknowledges the significant contributions that have
found their way into the fourth edition, and the first three editions acknowledge
earlier valuable contributions. See the Web site for a complete list.

Three reviewers deserve the highest possible praise and thanks for their
incisive comments, patience, excellent suggestions, and deep expertise. Chris Sells,
Jason Beres, and especially Raymond Chen made contributions that improved the
book immeasurably. To the best of my ability, I’ve revised the text to address their
points and invaluable input.

Numerous friends and colleagues also deserve a note of special thanks; I’ve
learned a lot from them over the years, and many of their ideas have found their
way into the book in one way or another. They’ve also been generous in providing
access to test systems. In particular, I’d like to thank my friends at Sierra Atlantic,
Cilk Arts (now part of Intel), Vault USA, and Rimes Technologies.

Anne H. Smith, the compositor, used her skill, persistence, and patience to
prepare this new edition for publication; the book simply would not have been pos-
sible without her assistance. Anne and her husband, Kerry, also have generously
tested the sample programs on their equipment.

The staff at Addison-Wesley exhibited the professionalism and expertise that
make an author’s work a pleasure. Joan Murray, the editor, and Karen Gettman,
the editor-in-chief, worked with the project from the beginning making sure that
no barriers got in the way and assuring that hardly any schedules slipped. Olivia
Basegio, the editorial assistant, managed the process throughout, and John Fuller
and Elizabeth Ryan from production made the production process seem almost
simple. Anna Popick, the project editor, guided the final editing steps and
schedule. Carol Lallier and Lori Newhouse, the copy editor and proofreader, made
valuable contributions to the book’s readability and consistency.

Johnson (John) M. Hart
jmhart62@gmail.com

December, 2009

ptg

This page intentionally left blank

ptg

xxxvii

About the Author

Johnson (John) M. Hart is a consultant in the fields of Microsoft Windows and
.NET application development, open systems computing, technical training and writ-
ing, and software engineering. He has more than twenty-five years of experience as a
software engineer, manager, engineering director, and senior technology consultant
at Cilk Arts, Inc., Sierra Atlantic, Hewlett-Packard, and Apollo Computer. John also
develops and delivers professional training courses in Windows, UNIX, and Linux
and was a computer science professor at the University of Kentucky for nine years.
He is the author of technical, trade, and academic articles and books including the
first, second, and third editions of Windows System Programming.

ptg

This page intentionally left blank

ptg

1

C H A P T E R

1 Getting Started
with Windows

Chapter 1 introduces the Microsoft Windows operating system (OS) family and
the Windows Application Programming Interface (API) that all family members
support. It also briefly describes the 32-bit (Win32) and 64-bit (Win64) API differ-
ences and portability issues, and, going forward, we mention Win32 and Win64
only when there is an important distinction.1 The context will help to distinguish
between Windows as an OS and Windows as the API for application development.

The Windows API, like any other OS API, has its own set of conventions and pro-
gramming techniques, which are driven by the Windows philosophy. A simple file
copy example introduces the Windows programming style, and this same style ap-
plies to file management, process and memory management, and advanced features
such as thread synchronization. In order to contrast Windows with more familiar
programming styles, there is a Standard C library version of the first example.

The first step is to review the basic features that any modern OS must provide
and, from there, to learn how to use these features in Windows.

Operating System Essentials

Windows makes core OS features available on systems as diverse as cell phones,
handheld devices, laptop PCs, and enterprise servers. Considering the most
important resources that a modern OS manages helps to explain the Windows
API.

• Memory. The OS manages a large, flat, virtual memory address space and
transparently moves information between physical memory and disk and
other secondary storage.

1 Be aware that Microsoft often uses the term“Win32” generically for unmanaged code; all our code is
unmanaged and does not use .NET’s Common Language Runtime (CLR).

ptg

2 C H A P T E R 1 G E T T I N G S T A R T E D W I T H W I N D O W S

• File systems. The OS manages a hierarchical, named file space and provides
both direct and sequential access as well as directory and file management.

• Processors. The OS must efficiently allocate computational tasks to proces-
sors, and multiple processors are increasingly common on even the smallest
computers.

• Resource naming and location. File naming allows for long, descriptive
names, and the naming scheme is extended to objects such as devices, syn-
chronization, and interprocess communication objects. The OS also locates
and manages access to named objects.

• Multitasking. The OS must manage processes, threads, and other units of
independent, asynchronous execution. Tasks can be preempted and scheduled
according to dynamically calculated priorities.

• Communication and synchronization. The OS manages task-to-task
communication and synchronization within single computers as well as
communication between networked computers and with the Internet.

• Security and protection. The OS provides flexible mechanisms to protect
resources from unauthorized and accidental access and corruption.

The Microsoft Windows API supports all these OS features and more and
makes them available on a range of Windows versions.

Windows Evolution

Several Windows versions support the Windows API. The multiple distinct Win-
dows versions can be confusing, but from the programmer’s perspective, they are
similar. In particular, they all support subsets of the identical Windows API. Pro-
grams developed for one system can, with considerable ease, run on another, re-
sulting in source and, in most cases, binary portability.

New Windows versions have added small amounts of new API functionality,
although the API has been remarkably stable since the beginning. Major themes
in Windows evolution include the following.

• Scalability. Newer versions run on a wider range of computers, up to enter-
prise servers with multiple processors and large memories and storage systems.

• Performance. Newer Windows versions contain internal improvements and
some new API features that improve performance.

ptg

W I N D O W S V E R S I O N S 3

• Integration. Each new release integrates additional technology, such as multi-
media, wireless networking, Web Services, .NET, and plug-and-play capabil-
ity. This technology is, in general, out of scope for this book.

• Ease of use. Improved graphical desktop appearance and ease of use are
readily apparent with each release.

• Enhanced API. Important API enhancements have been added over time.
The API is the central topic of this book.

Windows Versions

Windows, in an evolving series of versions, has been in use since 1993. The follow-
ing versions are important to developers at publication time.

• Windows 7 was released in October 2009, shortly before this book’s publication.

• Windows Vista is targeted at the individual user. Most commercial PCs sold
since 2007, including desktops, laptops, and notebooks, came with an appro-
priate version of Windows Vista preinstalled.

• Windows XP is Vista’s predecessor and is still very popular.

• Windows Server 2008 is targeted at enterprise and server applications, and
it was preceded by Windows Server 2003. Computers running Windows
Server 2008 frequently exploit multicore technology with multiple indepen-
dent processors. 64-bit applications are common on Windows Server 2008
computers.

• Windows 2000 is still in use, although Microsoft will retire support in mid-
2010.

• Windows CE is a specialized Window version targeted at smaller computers,
such as phones, palmtops, and embedded processors, and it provides large
subsets of Windows features.

Obsolete Previous Windows Versions

Earlier Windows versions are rare and generally not supported, but they are sum-
marized here to give some historical perspective. While there are numerous excep-
tions, especially in the later chapters, many examples in this book will operate on
these systems, although there are no guarantees.

ptg

4 C H A P T E R 1 G E T T I N G S T A R T E D W I T H W I N D O W S

• Windows NT 3.1, 3.5, 3.51, and 4.0 date back to 1993. NT was originally tar-
geted at servers and professional users, with Windows 9x (see the next bullet)
sold for personal and office use. Windows 2000 was the successor. The NT ker-
nel is the foundation for the current Windows kernel, even though the term
“Windows NT” is obsolete.

• Windows 95, Windows 98, and Windows Me (collectively, Windows 9x)
were primarily desktop and laptop OSs lacking, among other things, the NT
security features. Windows XP replaced these Windows versions.

Further back, Windows 3.1, a 16-bit OS, was dominant on personal computers
before the Windows 95 introduction, and its graphical user interface (GUI) was a
predecessor to the modern Windows GUI. The API, however, did not support
many essential OS features, such as true multitasking; memory management of a
large, flat address space; and security.

Going further back to the early 1980s, it is possible to identify DOS as the
original “IBM PC” OS. DOS had only a simple command line interface, but the
Windows command shell still supports DOS commands. In fact, most of the book’s
examples are command line programs, so you can run them under the command
shell; that is, the Windows program.

Windows NT5 and NT6

Windows 2000, XP, and Server 2003 use Windows NT kernel Version 5, although
the minor version (the “x” in 5.x) varies. For example, Windows XP uses kernel
Version NT 5.1.2600 (“2600” is the build number). Since the API features depend
on the kernel version, it is convenient to use the term “NT5” to refer to these three
Windows versions, even though Microsoft no longer uses the term “Windows NT.”

The NT6 kernel is the base for Windows 7 (6.1), Vista (6.0), and Server 2008
(6.1 for R2; 6.0 otherwise), and the term “NT6” denotes these three Windows ver-
sions.

While many programs will run on earlier versions, in general, we will assume
NT5 and NT6, which will allow us to exploit some advanced features. Since some
important features are available only in NT6, sample programs test the Windows
version number and terminate with an error message if they cannot run on the
host computer.

The Microso ft Deve loper ’s Network (MSDN) API documentat ion
(www.msdn.microsoft.com) states the version requirements. Check the documen-
tation if there is any doubt about an API function’s operation on a particular Win-
dows version. The documentation will name the specific Windows version
requirements, such as Windows Vista or Windows Server 2008, whereas we’ll fre-
quently state the same requirement as NT6.

www.msdn.microsoft.com

ptg

T H E W I N D O W S M A R K E T R O L E 5

Processor Support

Windows can support different underlying processor and computer architectures
and has a Hardware Abstraction Layer (HAL) to enable porting to different
processor architectures, although this is not a direct concern for the application
developer.

Windows runs primarily on the Intel x86 processor family, including the x86-
64 (or just x64) 64-bit extension, and compatible Advanced Micro Devices (AMD)
processors. Although less common, several Windows server versions run on the
Intel Itanium IA-64, a 64-bit architecture radically different from the classic x86
architecture.

The Windows Market Role

Windows is hardly unique in its ability to provide essential functionality on
several platforms. After all, numerous proprietary and open OSs have these
features, and UNIX2 and Linux have long been available on a wide range of
computers. There are, however, significant advantages, both business and
technical, to using Windows and to developing Windows applications.

• Windows dominates the market, especially on the desktop, and has done so for
many years with no change in sight.3 Therefore, Windows applications have a
large target market, numbering in the tens of millions and dwarfing other
desktop systems, including UNIX, Linux, and Macintosh.

• The market dominance of the Windows OSs means that applications and soft-
ware development and integration tools are widely and inexpensively
available for Windows.

• Windows supports multiprocessor computers. Windows is not confined to the
desktop; it can support departmental and enterprise servers and high-
performance workstations.4

2 UNIX comments always apply to Linux as well as to any other system that supports the POSIX API.
3 Linux is occasionally mentioned as a threat to Windows dominance, primarily as a server but also for
personal applications. While extremely interesting, speculation regarding future developments, much
less the comparative merits of Linux and Windows, is out of scope for this book.
4 The range of Windows host computers can be appreciated by considering that many programs in this
book have been tested on computers spanning from an obsolete 486 computer with 16MB of RAM to a
16-processor, 16GB RAM, 2.4GHz enterprise server.

ptg

6 C H A P T E R 1 G E T T I N G S T A R T E D W I T H W I N D O W S

• Windows applications can use a GUI familiar to tens of millions of users, and
many Windows applications are customized or “localized” for the language
and user interface requirements of users throughout the world.

• Most OSs, other than UNIX, Linux, and Windows, are proprietary to systems
from a single vendor.

• The Windows OSs have many features not available in standard UNIX,
although they may be available in some UNIX implementations. Thread pools
and Windows Services are two examples.

In summary, Windows provides modern OS functionality and can run
applications ranging from word processors and e-mail to enterprise integration
systems and large database servers. Furthermore, Windows platforms scale from
small devices to the desktop and the enterprise. Decisions to develop Windows
applications are driven by both technical features and business requirements.

Windows, Standards, and Open Systems

This book is about developing applications using the Windows API. For a pro-
grammer coming from UNIX and open systems, it is natural to ask, “Is Windows
open?” “Is Windows an industry standard?” “Is Windows just another proprietary
API?” The answers depend very much on the definitions of open, industry
standard, and proprietary, as well as on the benefits expected from open systems.

The Windows API is totally different from the POSIX standard API supported
by Linux and UNIX. Windows does not conform to the X/Open standard or any other
open industry standards formulated by standards bodies or industry consortia.

Windows is controlled by one vendor. Although Microsoft solicits industry
input and feedback, it remains the sole arbiter and implementor. This means that
the user receives many of the benefits that open standards are intended to provide
as well as other advantages.

• Uniform implementations reach the market quickly.

• There are no vendor-specific, nonstandard extensions, although the small
differences among the various Windows platforms can be important.

• One vendor has defined and implemented competent OS products with all the
required operating system features. Applications developers add value at a
higher level.

• The underlying hardware platform is open. Developers can select from
numerous platform vendors.

ptg

W I N D O W S P R I N C I P L E S 7

Arguments will continue to rage about whether this situation is beneficial or
harmful to users and the computer industry as a whole. This book neither enters
nor settles the argument; it is merely intended to help application developers use
Windows to solve their problems.

Nonetheless, Windows does support many essential standards. For example,
Windows supports the Standard C and C++ libraries and a wide array of open
interoperability standards. Thus, Windows Sockets provide a standard networked
programming interface for access to TCP/IP and other networking protocols,
allowing Internet access and interoperability with non-Windows computers. The
same is true with Remote Procedure Calls (RPCs).5 Diverse computers can com-
municate with high-level database management system (DBMS) protocols using
Structured Query Language (SQL). Finally, Internet support with Web and other
servers is part of the total Windows offering. Windows supports the key stan-
dards, such as TCP/IP, and many valuable options, including X Windows clients
and servers, are available at reasonable cost, or even as open source, in an active
market of Windows solution suppliers.

In summary, Windows supports the essential interoperability standards, and
while the core API is proprietary, it is available cost-effectively on a wide variety
of computers.

Windows Principles

It is helpful to keep in mind some basic Windows principles. The Windows API is
different in many ways, both large and small, from other APIs such as the POSIX
API. Although Windows is not inherently difficult, it requires its own coding style
and technique.

Here are some of the major Windows characteristics, which will become much
more familiar as you read through the book.

• Many system resources are represented as a kernel object identified and refer-
enced by a handle. These handles are somewhat comparable to UNIX file de-
scriptors and process IDs.6 Several important objects are not kernel objects
and will be identified differently.

5 Windows Sockets and RPCs are not properly part of Windows, but sockets are described in this book
because they relate directly to the general subject matter and approach.
6 These handles are similar to but not the same as the and handles used in Windows GUI
programming. Also, Windows does have a process ID, but it is not used the way a UNIX process ID is
used.

ptg

8 C H A P T E R 1 G E T T I N G S T A R T E D W I T H W I N D O W S

• Kernel objects must be manipulated by Windows APIs. There are no “back
doors.” This arrangement is consistent with the data abstraction principles of
object-oriented programming, although Windows is not object oriented.

• Objects include files, processes, threads, pipes for interprocess communica-
tion, memory mapping, events, and many more. Objects have security
attributes.

• Windows is a rich and flexible interface. First, it contains many functions that
perform the same or similar operations; in particular, convenience functions
combine common sequences of function calls into one function (is
one such convenience function and is the basis of an example later in this
chapter). Second, a given function often has numerous parameters and flags,
but you can normally ignore most of them. This book concentrates on the most
important functions and options rather than being encyclopedic.

• Windows offers numerous synchronization and communication mechanisms
tailored for different requirements.

• The Windows thread is the basic unit of execution. A process can contain one
or more threads.

• Windows function names are long and descriptive. The following function
names illustrate function name conventions as well as Windows’ variety:

In addition to these features, there are a few conventions for type names.

• The names for predefined data types, required by the API, are in uppercase
and are also descriptive. The following typical types occur frequently:

(defined as a 32-bit object for storing a single logical value)

(a handle for a kernel object)

(the ubiquitous 32-bit unsigned integer)

 (a string pointer)

We’ll introduce these and many other data types as required.

ptg

W I N D O W S P R I N C I P L E S 9

• The predefined types avoid the operator and make distinctions such as
differentiating (defined as) from (defined as

). Note: may be a normal or a 2-byte .

• Variable names, at least in function prototypes, also have conventions. For
example, might be a “long pointer to a zero-terminated string”
representing a file name. This is the so-called Hungarian notation, which this
book does not generally use for program variables. Similarly, is a
double word (32 bits) containing file access flags; “ ” denotes a double word.

Note: It is informative to look at the system include files where the functions,
constants, flags, error codes, and so on are defined. Many interesting files, such as
the following, are part of the Microsoft Visual Studio C++ environment and are
normally installed in an include directory along with Visual Studio:

(this file brings in all the others)

Finally, even though the original Windows API (Win32) was created from
scratch, it was designed to be backward-compatible with the Windows 3.1 Win16
API. This has several lingering and annoying effects, even though backward com-
patibility ceased to be an issue long ago.

• There are anachronisms in types, such as and , which refer
to the “long pointer” that is simply a 32-bit or 64-bit pointer. There is no need
for any other pointer type. At other times, the “long” is omitted, and
and are equivalent.7

• “ ” sometimes appears in macro names, such as ,
even though the macro is also used with Win64.

• The former requirement, no longer relevant, for backward compatibility
means that numerous 16-bit functions are never used in this book, even
though they might seem important. is such a function; always use

 to open an existing file.

7 The include files contain types, such as , without the prefix, but the examples conform to the
usage in many other books and the Microsoft documentation.

ptg

10 C H A P T E R 1 G E T T I N G S T A R T E D W I T H W I N D O W S

UNIX and Linux programmers will find some interesting differences in Windows.
For example, Windows s are “opaque.” They are not integers allocated in
sequential order. Thus, the fact that , , and are special file descriptor values,
which is important to some UNIX programs, has no analogy in Windows.

Many of the distinctions between, say, UNIX process IDs and file descriptors go
away. Windows uses s to reference both processes and open files, as well
as other kernel objects. While Windows does have a process ID, it is used differ-
ently than a UNIX process ID. Many important functions treat file, process, event,
pipe, and other handles identically.

UNIX programmers familiar with short, lowercase function and parameter names
will need to adjust to the more verbose Windows style.

Critical distinctions are made with such familiar concepts as processes. Windows
processes do not, for example, have parent-child relationships, although Windows
processes can be organized into job objects.

Finally, Windows text files represent the end-of-line sequence with rather
than with as in UNIX.

32-bit and 64-bit Source Code Portability

Example source code can be built as both 32-bit and 64-bit executable versions
(32-bit executables run on 64-bit computers but cannot exploit the larger address
spaces). The essential differences between versions are the pointer variable size
and the virtual address space size.

Most of the differences, from a programming point of view, concern the size of
pointers and careful avoidance of any assumption that a pointer and an integer
(, , and so on) are of the same length.

Chapter 5 shows additional differences where it is important to use Windows
functions that support 64-bit addresses.

With a little care, you will find that it is fairly simple to ensure that your pro-
grams will run under either Win32 or Win64. The program examples, both in the
book and on the Web site (see the “What You Need to Use This Book” section be-
low), are portable and have been tested on 64-bit computers. There are separate
projects for building the 32-bit and 64-bit versions from the same source code.

The Standard C Library: When to Use It for File Processing

Despite the unique Windows features, it is still possible to achieve most file
processing (the subject of Chapters 2 and 3) by using the familiar C programming
language and its ANSI Standard C library, which are layered on the Windows
API.

ptg

W H A T Y O U N E E D T O U S E T H I S B O O K 11

The C library (the adjectives ANSI and Standard are often omitted) also
contains numerous indispensable functions that do not correspond to Windows
system calls, such as functions defined in , , ,
formatted I/O functions, and character I/O functions. Other functions, however,
correspond closely to system calls, such as the and functions in

.
When is the C library adequate, and when is it necessary to use native

Windows file management system calls? This same question could be asked about
using C++ I/O streams or the system I/O provided within .NET. There is no easy
answer, but portability to non-Windows platforms is a consideration in favor of
non-Windows functions if an application needs only file processing and not, for
example, process management. However, many programmers have formulated
guidelines as to when the C library is or is not adequate, and these same
guidelines should apply to Windows. In addition, given the increased power,
performance potential, and flexibility provided by Windows, it is often convenient
or even necessary to go beyond the C library, as we will see starting as early as
Chapter 2. Windows file processing features not available with the C library
include file locking, memory mapping (required for memory sharing and
performance), asynchronous I/O, random access to very long files (more than 4GB
in length), and interprocess communication.

The C library file management functions are often adequate for simple
programs. With the C library, it is possible to write portable applications without
learning Windows, but options are limited. For example, Chapter 5 exploits
memory-mapped files for performance and programming convenience, and this
functionality is not included in the C library.

What You Need to Use This Book

Here is what you need to build and run the examples in this chapter and the rest
of the book.

First, of course, it is helpful to bring your knowledge of applications develop-
ment; knowledge of C programming is assumed.

Why Use C? Why Not C++?

The examples all use the C language, and, as necessary, use Microsoft extensions.
The API is defined in C syntax, and C++ programmers will have no difficulty us-
ing the API or extending the C examples. Furthermore, for a variety of reasons,
large amounts of legacy and some new code is written in C. Using C also makes
the examples accessible to novice as well as intermediate and advanced program-
mers, all of whom will find portions of the book to be useful.

ptg

12 C H A P T E R 1 G E T T I N G S T A R T E D W I T H W I N D O W S

At times, this choice results in code that is more awkward than one might
wish, and the code may strike some readers as a bit backward. For example, vari-
ables declarations occur at the start of program blocks rather than at the point of
first use, and comments use the syntax.

Using the Examples

Before you use the examples, however, you will need some basic hardware and
software.

• A computer running Windows.8

• A C/C++ compiler and development system, such as Microsoft Visual Studio
2005 or 2008.9 Other vendors also supply development systems, and although
none have been tested with the examples, several readers have mentioned
using other development systems successfully with only minor adjustments.
Note: We concentrate on developing Windows console applications and will not
truly exploit Microsoft Visual Studio’s full powers.

• Enough RAM and disk space for program development. Nearly any commer-
cially available computer will have more than enough memory, disk space,
and processing power to run all the example programs and the development
system, but check the requirements for the development system.10

• The on-line Microsoft Developer’s Network (MSDN) documentation, such as
that provided with Microsoft Visual Studio. It may be helpful to install this
documentation on your disk because you will access it frequently, but you can
easily access the information on the MSDN Web site.

• Download the “Examples” file, , from the book’s Web
site (www.jmhartsoftware.com). Unzip the file and read . Exam-
ples (the name used from now on) contains source code, Visual Studio projects,
executables, and everything else you need to build and run the examples in
this book.

8 I’ve tested Windows 7, Windows Vista, Windows XP, Windows Server 2003, and Windows Server
2008.
9 At the time of writing, Visual Studio 2010 is in beta test. I’ve tested several examples with VS 2010
and experienced no conversion difficulties.
10 The rapid pace of improvements in cost and performance is illustrated by recalling that in 1997 the
first edition of this book specified, without embarrassment or apology, 16MB of RAM and 256MB of disk
space. This fourth edition is being written on a laptop costing less than $800, with more than 100 times
the RAM (the RAM space exceeds the previously required disk space), 300 times the disk space, and a
processor running 50 times as fast as the one used when starting the first edition on a $2,500 PC.

www.jmhartsoftware.com

ptg

E X A M P L E : A S I M P L E S E Q U E N T I A L F I L E C O P Y 13

Example: A Simple Sequential File Copy

The following sections show short example programs implementing a simple
sequential file copy program in three different ways:

1. Using the Standard C library

2. Using Windows

3. Using a single Windows convenience function,

In addition to showing contrasting programming models, these examples show
the capabilities and limitations of the C library and Windows. Alternative implemen-
tations will enhance the program to improve performance and increase flexibility.

Sequential file processing is the simplest, most common, and most essential
capability of any file system, and nearly any large program processes at least
some files sequentially. Therefore, a simple file processing program is a good way
to introduce Windows and its conventions.

File copying, often with updating, and the merging of sorted files are common
forms of sequential processing. Compilers and text processing tools are examples
of other applications that access files sequentially.

Although sequential file processing is conceptually simple, efficient processing
that attains optimal speed can be much more difficult to achieve. It can require
overlapped I/O, memory mapping, threads, or other techniques.

Simple file copying is not very interesting by itself, but comparing programs
gives us a quick way to contrast different systems and to introduce Windows. The
following examples implement a limited version of the UNIX command, copying
one file to another, where the file names are specified on the command line. Error
checking is minimal, and existing files are simply overwritten. Subsequent
Windows implementations of this and other programs will address these and other
shortcomings.

File Copying with the Standard C Library

As illustrated in (Program 1–1), the Standard C library supports stream
I/O objects that are similar to, although not as general as, the Windows
objects shown in (Program 1–2). This program does not use the Windows API
directly, but Microsoft’s C Library implementation does use the API directly.

Program 1–1 File Copying with the C Library

ptg

14 C H A P T E R 1 G E T T I N G S T A R T E D W I T H W I N D O W S

Run 1–1 is a screenshot of execution with a short test.

ptg

E X A M P L E : A S I M P L E S E Q U E N T I A L F I L E C O P Y 15

• The working directory is set to the directory in the Examples directory
(see the “Using the Examples” section above). This directory contains the 32-
bit programs built with Visual Studio 2008, and we use this directory for
nearly all the example program screen shots.

• We need a text file for the test, and the program generates a text
file with 64-byte records with some random content. In this case, the output
file is with 10,000 records. We use frequently, and it’s avail-
able in the Examples if you’re curious about its operation.

• The second line in the screenshot shows execution.

• The next commands show all the text files and compares them to be sure that
the copy was correct. Note that the time stamps are different on the two files.

• The final line shows the error message if you try to copy a file that does not exist.

This simple example clearly illustrates some common programming assump-
tions and conventions that do not always apply with Windows.

Run 1–1 Execution and Test

ptg

16 C H A P T E R 1 G E T T I N G S T A R T E D W I T H W I N D O W S

1. Open file objects are identified by pointers to structures (UNIX uses
integer file descriptors). indicates an invalid value. The pointers are, in
effect, a form of handle to the open file object.

2. The call to specifies whether the file is to be treated as a text file or a
binary file. Text files contain system-specific character sequences to indicate
situations such as an end of line. On many systems, including Windows, I/O
operations on a text file convert between the end-of-line character sequence
and the null character that C interprets as the end of a string. In the example,
both files are opened in binary mode.

3. Errors are diagnosed with , which, in turn, accesses the global
variable to obtain information about the function call failure.
Alternatively, the function could be used to return an error code that
is associated with the rather than the system.

4. The and functions directly return the number of objects
processed rather than return the value in an argument, and this arrangement
is essential to the program logic. A successful read is indicated by a non-
negative value, and indicates an end of file.

5. The function applies only to objects (a similar statement applies
to UNIX file descriptors).

6. The I/O is synchronous so that the program must wait for the I/O operation to
complete before proceeding.

7. The C library I/O function is useful for error messages and occurs
even in the initial Windows example.

The C library implementation has the advantage of portability to UNIX,
Windows, and other systems that support ANSI C. Furthermore, as shown in
Appendix C, C library performance for sequential I/O is competitive with alterna-
tive implementations. Nonetheless, programs are still constrained to synchronous
I/O operations, although this constraint will be lifted somewhat when using
Windows threads (starting in Chapter 7).

C library file processing programs, like their UNIX equivalents, are able to per-
form random access file operations (using or, in the case of text files,

 and), but that is the limit of sophistication of Standard C library file
I/O. Note: Microsoft C++ does provide nonstandard extensions that support, for ex-
ample, file locking. Finally, the C library cannot control file security.

In summary, if simple synchronous file or console I/O is all that is needed,
then use the C library to write portable programs that will run under Windows.

ptg

E X A M P L E : A S I M P L E S E Q U E N T I A L F I L E C O P Y 17

File Copying with Windows

 (Program 1–2) shows the same program using the Windows API, and the
same basic techniques, style, and conventions are used throughout this book.

Program 1–2 File Copying with Windows, First Implementation

ptg

18 C H A P T E R 1 G E T T I N G S T A R T E D W I T H W I N D O W S

Run 1–2 shows execution, showing the same information as Run 1–1. All
text files other than were removed before the run.

This simple example illustrates some Windows programming features that
Chapter 2 will start to explain in detail.

1. is always necessary and contains all Windows function definitions
and data types.

2. Although there are some important exceptions, most Windows objects in this
book are identified by variables of type , and a single generic

 function applies to most objects.

3. Close all open handles when they are no longer required so as to free resources.
However, the handles will be closed automatically by Windows when a process
exits, and Windows will destroy an object and free its resources, as appropriate,
if there are no remaining handles referring to the object. (Note: Closing the
handle does not destroy the file.)

4. Windows defines numerous symbolic constants and flags. Their names are
usually quite long and often describe their purposes.
and are typical.

Run 1–2 Execution and Test

ptg

E X A M P L E : A S I M P L E S E Q U E N T I A L F I L E C O P Y 19

5. Functions such as and return values, which you
can use in logical expressions, rather than byte counts, which are arguments.
This alters the loop logic slightly.11 The end of file is detected by a zero byte
count and is not a failure.

6. System error codes, as s, can be obtained immediately after a failed sys-
tem call through . Program 2–1 shows how to obtain Windows-
generated textual error messages.

7. Windows has a powerful security system, described in Chapter 15. The output
file in this example is owned by the user and will be secured with the user’s
default settings.

8. Functions such as have a rich set of options, and the example
uses default values.

File Copying with a Windows Convenience Function

Windows has a number of convenience functions that combine several functions to
perform a common task. These convenience functions can also improve perfor-
mance in some cases (see Appendix C). , for example, greatly simplifies
the file copy program, (Program 1–3). Among other things, there is no need
to be concerned with the appropriate buffer size, which was arbitrarily 256 in the
two preceding programs. Furthermore, copies file metadata (such as
time stamps) that will not be preserved by the other two programs.

Program 1–3 File Copying with a Windows Convenience Function

11 Notice that the loop logic depends on ANSI C’s left-to-right evaluation of logical “and” () and logi-
cal “or” () operations.

ptg

20 C H A P T E R 1 G E T T I N G S T A R T E D W I T H W I N D O W S

Run 1–3 shows the test; notice that preserves the file time
and other attributes of the original file. The previous two copy programs changed
the file time.

Also notice the program, which shows the execution time for a pro-
gram; implementation is described in Chapter 6, but it’s helpful to use it
now. In this example, is small, and the execution time is minimal and not
measured precisely. However, you can easily create larger files with .

Summary

The introductory examples, three simple file copy programs, illustrate many dif-
ferences between C library and Windows programs. Appendix C shows some of the
performance differences among the various implementations. The Windows exam-

Run 1–3 Execution and Test, with Timing

ptg

S U M M A R Y 21

ples clearly illustrate Windows programming style and conventions but only hint
at the functionality available to Windows programmers.

Looking Ahead

Chapters 2 and 3 take a much more extensive look at I/O and the file system.
Topics include console I/O, ASCII and Unicode character processing, file and
directory management, file attributes, and advanced options, as well as registry
programming. These two chapters develop the basic techniques and lay the
groundwork for the rest of the book.

Additional Reading

Publication information about the following books is listed in the bibliography.

Windows API

Windows via C/C+ by Jeffrey Richter and Christophe Nasarre, covers Windows
programming with significant overlap with this book.

The hypertext on-line MSDN help available with Microsoft Visual C++ docu-
ments every function, and the same information is available from the Microsoft
home page, www.msdn.microsoft.com, which also contains numerous technical pa-
pers covering different Windows subjects. Start with MSDN and search for any
topic of interest. You’ll find a variety of function descriptions, coding examples,
white papers, and other useful information.

Windows History

See Raymond Chen’s The Old New Thing: Practical Development Throughout the
Evolution of Windows for a fascinating insider’s look at Windows development
with explanations of why many Windows features were designed as they are.

Windows NT Architecture

Windows Internals: Including Windows Server 2008 and Windows Vista, by Mark
Russinovich, David Solomon, and Alex Ionescu, is for the reader who wants to
know more about Windows design objectives or who wants to understand the un-
derlying architecture and implementation. The book discusses objects, processes,
threads, virtual memory, the kernel, and I/O subsystems. You may want to refer
to Windows Internals as you read this book. Also note the earlier books by these
authors and Helen Custer that preceded this book and provide important histori-
cal insight into Windows evolution.

www.msdn.microsoft.com

ptg

22 C H A P T E R 1 G E T T I N G S T A R T E D W I T H W I N D O W S

UNIX

Advanced Programming in the UNIX Environment, by W. Richard Stevens and
Stephen A. Rago, discusses UNIX in much the same terms in which this book
discusses Windows. This remains the standard reference on UNIX features and
offers a convenient working definition of what UNIX, as well as Linux, provides.
This book also contrasts C library file I/O with UNIX I/O, and this discussion is
relevant to Windows.

If you are interested in OS comparisons and an in-depth UNIX discussion, The
Art of UNIX Programming, by Eric S. Raymond, is fascinating reading, although
many Windows users may find the discussion slightly biased.

Windows GUI Programming

Windows user interfaces are not covered here. See Brent Rector and Joseph M.
Newcomer, Win32 Programming, and Charles Petzold, Programming Windows,
Fifth Edition.

Operating Systems Theory

There are many good texts on general OS theory. Modern Operating Systems, by
Andrew S. Tanenbaum, is one of the more popular.

The ANSI Standard C Library

The Standard C Library, by P. J. Plauger, is a comprehensive guide. For a quick
overview, The C Programming Language, by Brian W. Kernighan and Dennis M.
Ritchie, lists and explains the complete library, and this book remains the classic
book on C. These books can be used to help decide whether the C library is
adequate for your file processing requirements.

Windows CE

SAMS Teach Yourself Windows CE Programming in 24 Hours, by Jason P.
Nottingham, Steven Makofsky, and Andrew Tucker, is recommended for those
who wish to apply the material in this book to Windows CE.

Exercises

1–1. Compile, build, and execute the three file copy programs. Other possibilities
include using UNIX compatibility libraries, including the Microsoft Visual
C++ library (a program using this library is included in Examples). Note: All

ptg

E X E R C I S E S 23

source code is in the Examples file, along with documentation to describe
how to build and run the programs using Microsoft Visual Studio.

1–2. Become familiar with a development environment, such as Microsoft Visual
Studio 2005 or 2008. In particular, learn how to build console applications.
Also experiment with the debugger on the programs in this chapter.
Examples will get you started, and you will find extensive information on
the Microsoft MSDN site and with the development environment’s
documentation.

1–3. Windows uses the carriage return–line feed () sequence to denote an
end of line. Determine the effect on Program 1–1 if the input file is opened
in binary mode and the output file in text mode, and conversely. What is the
effect under UNIX or some other system?

1–4. Time the file copy programs using large files. Use to time program
execution and use , or any other technique, to generate large
files. Obtain data for as many of the combinations as possible and compare
the results. Needless to say, performance depends on numerous factors, but
by keeping other system parameters the same, it is possible to get helpful
comparisons between the implementations. Suggestion: Tabulate the
results in a spreadsheet to facilitate analysis. Chapter 6 contains a
program, , for timing program execution, and the executable,

, is in the Examples file run directories. Appendix C gives some
experimental results.

ptg

This page intentionally left blank

ptg

25

C H A P T E R

2 Using the
Windows File
System and
Character I/O

The file system and simple terminal I/O are often the first OS features that the
developer encounters. Early PC OSs such as MS-DOS did little more than manage
files and terminal (or console) I/O, and these resources are also central features of
nearly every OS.

Files are essential for the long-term storage of data and programs. Files are
also the simplest form of program-to-program communication. Furthermore,
many aspects of the file system model apply to interprocess and network commu-
nication.

The file copy programs in Chapter 1 introduced the four essential file process-
ing functions:

This chapter explains these and related functions and also describes character pro-
cessing and console I/O functions in detail. First, we say a few words about the vari-
ous file systems available and their principal characteristics. In the process, we’ll
see how to use Unicode wide characters for internationalization. The chapter in-
cludes an introduction to Windows file and directory management.

ptg

26 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

The Windows File Systems

Windows natively supports four file systems on directly attached devices, but only the
first is important throughout the book, as it is Microsoft’s primary, full-functionality file
system. In addition, file systems are supported on devices such as USB drives. The file
system choice on a disk volume or partition is specified when the volume is formatted.

1. The NT file system (NTFS) is Microsoft’s modern file system that supports
long file names, security, fault tolerance, encryption, compression, extended
attributes, and very large files1 and volumes. Note that diskettes, which are
now rare, do not support NTFS.

2. The File Allocation Table (FAT and FAT32) file systems are rare on current
systems and descend from the original MS-DOS and Windows 3.1 FAT (or
FAT16) file systems. FAT32 supported larger disk drives and other enhance-
ments, and the term FAT will refer to both versions. FAT does not support
Windows security, among other limitations. FAT is the only supported file sys-
tem for floppy disks and is often the file system on memory cards.

3. The CD-ROM file system (CDFS), as the name implies, is for accessing
information provided on CD-ROMs. CDFS is compliant with the ISO 9660
standard.

4. The Universal Disk Format (UDF), an industry standard, supports DVD
drives and will ultimately supplant CDFS. Windows Vista uses the term Live
File System (LFS) as an enhancement that allows you to add new files and
hide, but not actually delete, files.

Windows provides both client and server support for distributed file systems,
such as the Networked File System (NFS) and Common Internet File System
(CIFS). Windows Server 2003 and 2008 provide extensive support for storage area
networks (SANs) and emerging storage technologies. Windows also allows custom
file system development.

The file system API accesses all the file systems in the same way, sometimes
with limitations. For example, only NTFS supports security. This chapter and the
next point out features unique to NTFS as appropriate, but, in general, assume
NTFS.

1 “Very large” and “huge” are relative terms that we’ll use to describe a file longer than 4GB, which
means that you need to use 64-bit integers to specify the file length and positions in the file.

ptg

F I L E N A M I N G 27

File Naming

Windows supports hierarchical file naming, but there are a few subtle distinctions
for the UNIX user and basic rules for everyone.

• The full pathname of a disk file starts with a drive name, such as or . The
 and drives are normally diskette drives, and , , and so on are hard

disks, DVDs, and other directly attached devices. Network drives are usually
designated by letters that fall later in the alphabet, such as and .

• Alternatively, a full pathname, or Universal Naming Convention (UNC), can
start with a double backslash (), indicating the global root, followed by a
server name and a share name to indicate a path on a network file server. The
first part of the pathname, then, is .

• The pathname separator is the backslash (), although the forward slash ()
works in and other low-level API pathname parameters. This
may be more convenient for C/C++ programmers, although it’s best simply to
use backslashes to avoid possible incompatibility.

• Directory and file names cannot contain any ASCII characters with a value in
the range 1–31 or any of these characters:

These characters have meaning on command lines, and their occurrences in
file names would complicate command line parsing. Names can contain
blanks. However, when using file names with blanks on a command line, put
each file name in quotes so that the name is not interpreted as naming two
distinct files.

• Directory and file names are case-insensitive, but they are also case-retaining,
so that if the creation name is , the file name will show up as it was
created, but the file can also be accessed with the name .

• Normally, file and directory names used as API function arguments can be as
many as 255 characters long, and pathnames are limited to charac-
ters (currently 260). You can also specify very long names with an escape se-
quence, which we’ll describe later.

• A period () separates a file’s name from its extension, and extensions (usually
two to four characters after the rightmost period in the fi le name)
conventionally indicate the file’s type. Thus, would be an executable
file, and would be a C language source file. File names can contain
multiple periods.

ptg

28 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

 A single period () and two periods (), as directory names, indicate the
current directory and its parent, respectively.

With this introduction, it is now time to learn more about the Windows
functions introduced in Chapter 1.

Opening, Reading, Writing, and Closing Files

The first Windows function described in detail is , which opens
existing files and creates new ones. This and other functions are described first by
showing the function prototype and then by describing the parameters and
function operation.

Creating and Opening Files

This is the first Windows function, so we’ll describe it in detail; later descriptions
will frequently be much more streamlined as the Windows conventions become
more familiar. This approach will help users understand the basic concepts and
use the functions without getting bogged down in details that are available on
MSDN.

Furthermore, is complex with numerous advanced options not
described here; we’ll generally mention the more important options and some-
times give very brief descriptions of other options that are used in later chapters
and examples.

Chapter 1’s introductory Windows program (Program 1–2) shows a sim-
ple use of in which there are two calls that rely on default values for
most of the parameters shown here.

Return: A to an open file object, or
 in case of failure.

ptg

O P E N I N G , R E A D I N G , W R I T I N G , A N D C L O S I N G F I L E S 29

Parameters

The parameter names illustrate some Windows conventions that were introduced
in Chapter 1. The prefix describes (32 bits, unsigned) options containing
flags or numerical values. (long pointer to a zero-terminated string), or,
more simply, , is for pathnames and other strings, although the Microsoft
documentation is not entirely consistent. At times, you need to use common sense
or read the documentation carefully to determine the correct data types.

 is a pointer to the null-terminated string that names the file, pipe, or
other named object to open or create. The pathname is normally limited to

 (260) characters, but you can circumvent this restriction by prefixing
the pathname with and using Unicode characters and strings.2 This tech-
nique allows functions requiring pathname arguments to use names as long as
32K characters. The prefix is not part of the name. Finally, the data type
is explained in an upcoming section that also describes generic characters and
strings; just regard it as a string data type for now.

 specifies the read and write access, using and
. Flag values such as and do not exist. The

prefix may seem redundant, but it is necessary to conform with the macro names in
the Windows header file, . Numerous other constant names may seem
longer than necessary, but the long names are easily readable and avoid name colli-
sions with other macros.

These values can be combined with a bit-wise “or” operator (), so to open a
file for read and write access:

 is a bit-wise “or” combination of:

• —The file cannot be shared. Furthermore, not even this process can open a
second on this file.

• —Other processes, including the one making this call, can
open this file for concurrent read access.

• —This allows concurrent writing to the file.

When relevant to proper program operation, the programmer must take care to
prevent concurrent updates to the same file location by using locks or other mech-
anisms. Chapter 3 covers this in more detail.

2 Please see the “Interlude: Unicode and Generic Characters” section later in this chapter for more in-
formation.

ptg

30 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

 points to a structure. Use
 values with and all other functions for now; security is treated

in Chapter 15.
 specifies whether to create a new file, overwrite an existing file, and

so on.

• —Create a new file. Fail if the specified file already exists.

• —Create a new file, or overwrite the file if it already exists.

• —Open an existing file or fail if the file does not exist.

• —Open the file, creating it if it does not exist.

• —Set the file length to zero. must specify at
least access. Destroy all contents if the specified file exists.
Fail if the file does not exist.

 specifies file attributes and flags. There are 32 flags and
attributes. Attributes are characteristics of the file, as opposed to the open

, and these flags are ignored when an existing file is opened. Here are
some of the more important attribute and flag values.

• —This attribute can be used only when no other
attributes are set (flags can be set, however).

• —Applications can neither write to nor delete
the file.

• —This is useful for temporary files. Windows
deletes the file when the last open is closed.

• —This attribute flag is important for asynchronous
I/O (see Chapter 14).

Several additional flags also specify how a file is processed and help the
Windows implementation optimize performance and file integrity.

• —The file is intended for random access, and
Windows will attempt to optimize file caching.

• —The file is for sequential access, and
Windows will optimize caching accordingly. These last two access modes are
not enforced and are hints to the Windows cache manager. Accessing a file in
a manner inconsistent with these access modes may degrade performance.

ptg

O P E N I N G , R E A D I N G , W R I T I N G , A N D C L O S I N G F I L E S 31

• and are two ex-
amples of advanced flags that are useful in some advanced applications.

 is the of an open file that specifies
extended attributes to apply to a newly created file, ignoring .
Normally, this parameter is . Windows ignores when an ex-
isting file is opened. This parameter can be used to set the attributes of a new file
to be the same as those of an existing file.

The two instances in (Program 1–2) use default values
extensively and are as simple as possible but still appropriate for the task. It could
be beneficial to use in both cases. (Exercise 2–3
explores this option, and Appendix C shows the performance results.)

Notice that if the file share attributes and security permit it, there can be
numerous open handles on a given file. The open handles can be owned by the same
process or by different processes. (Chapter 6 describes process management.)

Windows Vista and later versions provide the function, which
returns a new handle with different flags, access rights, and so on, assuming there
are no conflicts with existing handles to the same file. allows you to
have different handles for different situations and protect against accidental mis-
use. For example, a function that updates a shared file could use a handle with
read-write access, whereas other functions would use a read-only handle.

Closing Files

Windows has a single all-purpose function to close and invalidate
kernel handles3 and to release system resources. Use this function to close nearly
all objects; exceptions are noted. Closing a handle also decrements the ob-
ject’s handle reference count so that nonpersistent objects such as temporary files
and events can be deleted. Windows will close all open handles on exit, but it is
still good practice for programs to close their handles before terminating.

Closing an invalid handle or closing the same handle twice will cause an
exception when running under a debugger (Chapter 4 discusses exceptions and
exception handling). It is not necessary or appropriate to close the standard device
handles, which are discussed in the “Standard Devices and Console I/O” section.

3 It is convenient to use the term “handle,” and the context should make it clear that we mean a Win-
dows .

Return: if the function succeeds; otherwise.

ptg

32 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

The comparable UNIX functions are different in a number of ways. The UNIX
 function returns an integer file descriptor rather than a handle, and it

specifies access, sharing, create options, attributes, and flags in the single integer
 parameter. The options overlap, with Windows providing a richer set.

There is no UNIX equivalent to . UNIX files are always shareable.

Both systems use security information when creating a new file. In UNIX, the
 argument specifies the familiar user, group, and other file permissions.

 is comparable to but it is not general purpose.

The C library functions use objects, which are comparable to han-
dles (for disk files, terminals, tapes, and other devices) connected to streams. The

 mode parameter specifies whether the file data is to be treated as binary or
text. There is a set of options for read-only, update, append at the end, and so on.

 allows reuse without closing it first. The Standard C library can-
not set security permissions.

closes a . Most -related functions have the prefix.

Reading Files

Assume, until Chapter 14, that the file handle does not have the
 option set in . , then, starts at the

current file position (for the handle) and advances the position by the number of
bytes transferred.

The function fails, returning , if the handle or any other parameters are
invalid or if the read operation fails for any reason. The function does not fail if
the file handle is positioned at the end of file; instead, the number of bytes read
() is set to .

Return: if the read succeeds (even if no bytes were read due
to an attempt to read past the end of file).

ptg

O P E N I N G , R E A D I N G , W R I T I N G , A N D C L O S I N G F I L E S 33

Parameters

Because of the long variable names and the natural arrangement of the param-
eters, they are largely self-explanatory. Nonetheless, here are some brief
explanations.

 is a file handle with access, a subset of
 access. points to the memory buffer to receive the input data.

 is the number of bytes to read from the file.
 points to the actual number of bytes read by the

 call. This value can be zero if the handle is positioned at the end of file
or there is an error, and message-mode named pipes (Chapter 11) allow a zero-
length message.

 points to an structure (Chapters 3 and 14). Use
 for the time being.

Writing Files

The parameters are familiar by now. Notice that a successful write does
not ensure that the data actually is written through to the disk unless

 is specified with . If the
position plus the write byte count exceed the current file length, Windows will ex-
tend the file length.

UNIX and are the comparable functions, and the programmer sup-
plies a file descriptor, buffer, and byte count. The functions return the number of
bytes actually transferred. A value of on indicates the end of file; – indi-
cates an error. Windows, by contrast, requires a separate transfer count and re-
turns Boolean values to indicate success or failure.

The functions in both systems are general purpose and can read from files, termi-
nals, tapes, pipes, and so on.

Return: if the function succeeds; otherwise.

ptg

34 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

The Standard C library and binary I/O functions use object size
and object count rather than a single byte count as in UNIX and Windows. A
short transfer could be caused by either an end of file or an error; test explicitly
with or . The library provides a full set of text-oriented functions,
such as and , that do not exist outside the C library in either OS.

Interlude: Unicode and Generic Characters

Before proceeding, we explain briefly how Windows processes characters and
differentiates between 8- and 16-bit characters and generic characters. The topic
is a large one and beyond the book’s scope, so we only provide the minimum detail
required.

Windows supports standard 8-bit characters (type or) and wide 16-
bit characters (, which is defined to be the C type). The Microsoft
documentation refers to the 8-bit character set as ANSI, but it is actually a misno-
mer. For convenience, we use the term “ASCII,” which also is not totally accurate.4

The wide character support that Windows provides using the Unicode UTF-16
encoding is capable of representing symbols and letters in all major languages, in-
cluding English, French, Spanish, German, Japanese, and Chinese.

Here are the normal steps for writing a generic Windows application that can
be built to use either Unicode or 8-bit ASCII characters.

1. Define all characters and strings using the generic types , , and
.

2. Include the definitions and in all
source modules to get Unicode wide characters (ANSI C ; otherwise,
with and undefined, will be equivalent to
(ANSI C). The definition must precede the
statement and is frequently defined on the compiler command line, the Visual
Studio project properties, or the project’s file. The first preproces-
sor variable controls the Windows function definitions, and the second vari-
able controls the C library.

3. Byte buffer lengths—as used, for example, in —can be calculated
using .

4 The distinctions and details are technical but can be critical in some situations. ASCII codes only go
to 127. There are different ASNI code pages, which are configurable from the Control Panel. Use your
favorite search engine or search MSDN with a phrase such as “Windows code page 1252” to obtain
more information.

ptg

I N T E R L U D E : U N I C O D E A N D G E N E R I C C H A R A C T E R S 35

4. Use the collection of generic C library string and character I/O functions in
. Representative functions are , (for),

(for), (for), , , , and
.5 See MSDN for a complete and extensive list. All these definitions

depend on . This collection is not complete. is an example of a
function without a wide character implementation. New versions are provided in
the Examples file as required.

5. Constant strings should be in one of three forms. Use these conventions for
single characters as well. The first two forms are ANSI C; the third—the
macro (equivalently, and)—is supplied with the Microsoft C
compiler.

6. Include after to get required definitions for text macros
and generic C library functions.

Windows uses Unicode 16-bit characters throughout, and NTFS file names
and pathnames are represented internally in Unicode. If the macro is
defined, wide character strings are required by Windows calls; otherwise, 8-bit
character strings are converted to wide characters. Some Windows API functions
only support Unicode, and this policy is expected to continue with new functions.

All future program examples will use instead of the normal for
characters and character strings unless there is a clear reason to deal with
individual 8-bit characters. Similarly, the type indicates a pointer to a
generic string, and indicates, in addition, a constant string. At times,
this choice will add some clutter to the programs, but it is the only choice that
allows the flexibility necessary to develop and test applications in either Unicode
or 8-bit character form so that the program can be easily converted to Unicode at a
later date. Furthermore, this choice is consistent with common, if not universal,
industry practice.

It is worthwhile to examine the system include files to see how and the
system function interfaces are defined and how they depend on whether or not

 and are defined. A typical entry is of the following form:

5 The underscore character () indicates that a function or keyword is provided by Microsoft C, and the
letters and denote a generic text character. Other development systems provide similar capability
but may use different names or keywords.

ptg

36 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

Alternative Generic String Processing Functions

String comparisons can use and rather than the generic
 and to account for the specific language and region, or locale,

at run time and also to perform word rather than string comparisons. String
comparisons simply compare the numerical values of the characters, whereas
word comparisons consider locale-specific word order. The two methods can give
opposite results for string pairs such as coop/co-op and were/we’re.

There is also a group of Windows functions for dealing with Unicode
characters and strings. These functions handle locale characteristics
transparently. Typical functions are , which can operate on strings as
well as individual characters, and . Other string functions
include (which is locale-specific). The generic C library functions
(e.g.,) and the Windows functions will both appear in upcoming
examples to demonstrate their use. Examples in later chapters will rely mostly on
the generic C library for character and string manipulation, as the C Library has
the required functionality, the Windows functions do not add value, and readers
will be familiar with the C Library.

The Generic Main Function

Replace the C function, with its argument list ([), with the macro
. The macro expands to either or depending on the

definition. The definition is in , which must be included after
. A typical main program heading, then, would look like this:

The Microsoft C function also supports a third parameter for
environment strings. This nonstandard extension is also common in UNIX.

ptg

U N I C O D E S T R A T E G I E S 37

Function Definitions

A function such as is defined through a preprocessor macro as
 when is not defined and as when

is defined. The definitions also describe the string parameters as 8-bit or wide
character strings. Consequently, compilers will report a source code error, such as
an illegal parameter to , as an error in the use of or

.

Unicode Strategies

A programmer starting a Windows project, either to develop new code or to en-
hance or port existing code, can select from four strategies, based on project re-
quirements.

1. 8-bit only. Ignore Unicode and continue to use the (or) data type
and the Standard C library for functions such as , , and .

2. 8-bit or Unicode with generic code. Follow the earlier guidelines for ge-
neric code. The example programs generally use this strategy with the Uni-
code macros undefined to produce 8-bit code.

3. Unicode only. Follow the generic guidelines, but define the two preprocessor
variables. Alternatively, use wide characters and the wide character functions
exclusively.

4. Unicode and 8-bit. The program includes both Unicode and ASCII code and
decides at run time which code to execute, based on a run-time switch or other
factors.

As mentioned previously, writing generic code, while requiring extra effort
and creating awkward-looking code, allows the programmer to maintain
maximum flexibility. However, Unicode only (Strategy 3) is increasingly common,
especially with applications requiring a graphical user interface.

 (Program 2–1) shows how to specify the language for error
messages.

The POSIX XPG4 internationalization standard is considerably different from
Unicode. Among other things, characters can be represented by 4 bytes, 2 bytes,
or 1 byte, depending on the context, locale, and so on.

Microsoft C implements the Standard C library functions, and there are generic
versions. Thus, there is a function in . Windows uses Uni-
code characters.

ptg

38 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

Example: Error Processing

, Program 1–2, showed some rudimentary error processing, obtaining the
 error number with the function. A function call, rather

than a global error number, such as the UNIX , ensures that system errors
are unique to the threads (Chapter 7) that share data storage.

The function turns the message number into a meaningful
message, in English or one of many other languages, returning the message length.

, Program 2–1, shows a useful general-purpose error-processing
function, , which is similar to the C library and to

, , and other functions. prints a message speci-
fied in the first argument and will terminate with an exit code or return, depend-
ing on the value of the second argument. The third argument determines whether
the system error message should be displayed.

Notice the arguments to . The value returned by
 is used as one parameter, and a flag indicates that the message is to

be generated by the system. The generated message is stored in a buffer allocated
by the function, and the address is returned in a parameter. There are several
other parameters with default values. The language for the message can be set at
either compile time or run time. This information is sufficient for our needs, but
MSDN supplies complete details.

 can simplify error processing, and nearly all subsequent
examples use it. Chapter 4 extends to generate exceptions.

Program 2–1 introduces the include file . As the name implies,
this file includes , , which has the defini-
tion, and other include files.6 It also defines commonly used functions, such as

 itself. All subsequent examples will use this single include file, which
is in the Examples code.

Notice the call to the function near the end of the program, as re-
quired by (see MSDN). This function is explained in Chapter 5.
Previous book editions erroneously used .

See Run 2–2 for sample output from a complete program, and
many other screenshots throughout the book show output.

6 “Everything” is an exaggeration, of course, but it’s everything we need for most examples, and it’s
used in nearly all examples. Additional special-purpose include files are introduced in later chapters.

ptg

S T A N D A R D D E V I C E S 39

Program 2–1 Reporting System Call Errors

}

Standard Devices

Like UNIX, a Windows process has three standard devices for input, output, and
error reporting. UNIX uses well-known values for the file descriptors (, , and),
but Windows requires s and provides a function to obtain them for the
standard devices.

ptg

40 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

Parameters

 must have one of these values:

•

•

•

The standard device assignments are normally the console and the keyboard.
Standard I/O can be redirected.

 does not create a new or duplicate handle on a standard device.
Successive calls in the process with the same device argument return the same han-
dle value. Closing a standard device handle makes the device unavailable for future
use within the process. For this reason, the examples often obtain a standard device
handle but do not close it.

Chapter 7’s example and Chapter 11’s example illustrate
 usage.

Parameters

In , has the same enumerated values as in
. specifies an open file that is to be the standard device.

There are two reserved pathnames for console input (the keyboard) and console
output: and . Initially, standard input, output, and error are
assigned to the console. It is possible to use the console regardless of any redirection
to these standard devices; just use to open handles to or

. The “Console I/O” section at the end of this chapter covers the subject.

Return: A valid handle if the function succeeds;
otherwise.

Return: or indicating success or failure.

ptg

E X A M P L E : C O P Y I N G M U L T I P L E F I L E S T O S T A N D A R D O U T P U T 41

UNIX standard I/O redirection is considerably different (see Stevens and Rago
[pp. 61–64]).

The first method is indirect and relies on the fact that the function returns
the lowest numbered available file descriptor. Suppose you wish to reassign
standard input (file descriptor) to an open file description, . The
first method is:

The second method uses , and the third uses on the cryptic and
overloaded function.

Example: Copying Multiple Files to Standard Output

, the next example (Program 2–2), illustrates standard I/O and extensive error
checking as well as user interaction. This program is a limited implementation of
the UNIX command, which copies one or more specified files—or standard in-
put if no files are specified—to standard output.

Program 2–2 includes complete error handling. Future program listings omit
most error checking for brevity, but the Examples contain the complete programs
with extensive error checking and documentation. Also, notice the func-
tion, which is called at the start of the program. This function, included in the Ex-
amples file and used throughout the book, evaluates command line option flags
and returns the index of the first file name. Use in much the same
way as is used in many UNIX programs.

Program 2–2 File Concatenation to Standard Output

ptg

42 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

Run 2–2 shows output with and without errors. The error output occurs
when a file name does not exist. The output also shows the text that the
program generates; is convenient for these examples, as it quickly gener-
ates text files of nearly any size. Also, notice that the records can be sorted on the
first 8 characters, which will be convenient for examples in later chapters. The “x”
character at the end of each line is a visual cue and has no other meaning.

Finally, Run 2–2 shows displaying individual file names; this feature is
not part of Program 2–2 but was added temporarily to help clarify Run 2–2.

ptg

E X A M P L E : S I M P L E F I L E E N C R Y P T I O N 43

Example: Simple File Encryption

File copying is familiar by now, so Program 2–3 also converts a file byte-by-byte so
that there is computation as well as file I/O. The conversion is a modified “Caesar
cipher,” which adds a fixed number to each byte (a Web search will provide
extensive background information). The program also includes some error
reporting. It is similar to Program 1–3 (), replacing the final call to

 with a new function that performs the file I/O and the byte addition.
The shift number, along with the input and output file, are command line pa-

rameters. The program adds the shift to each byte modulo 256, which means that
the encrypted file may contain unprintable characters. Furthermore, end of line,
end of string, and other control characters are changed. A true Caesar cipher only
shifts the letters; this implementation shifts all bytes. You can decrypt the file by
subtracting the original shift from 256 or by using a negative shift.

This program, while simple, is a good base for numerous variations later in
the book that use threads, asynchronous I/O, and other file processing techniques.

Run 2–2 Results, with Output

ptg

44 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

Program 2–4, immediately after Program 2–3, shows the actual conversion
function, and Run 2–3 shows program operation with encryption, decryption, and
file comparison using the Windows command.

Comment: Note that the full Examples code uses the Microsoft C Library func-
tion, , to determine if the file exists. The code comments describe two al-
ternative techniques.

Warning: Future program listings after Program 2–3 omit most, or all, error
checking in order to streamline the presentation and concentrate on the logic. Use
the full Examples code if you want to copy any of the examples.

Program 2–3 File Encryption with Error Reporting

ptg

E X A M P L E : S I M P L E F I L E E N C R Y P T I O N 45

Program 2–4 is the conversion function called by Program 2–3; later,
we’ll have several variations of this function.

Program 2–4 File Conversion Function

Run 2–3 Caesar Cipher Run and Test

ptg

46 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

Performance

Appendix C shows that the performance of the file conversion program can be
improved by using such techniques as providing a larger buffer and by specifying

 with . Later chapters show more
advanced techniques to enhance this simple program.

File and Directory Management

This section introduces the basic functions for file and directory management.

File Management

Windows provides a number of file management functions, which are generally
straightforward. The functions described here delete, copy, and rename files.
There is also a function to create temporary file names.

File Deletion

You can delete a file by specifying the file name and calling the func-
tion. Recall that all absolute pathnames start with a drive letter or a server name.

ptg

F I L E A N D D I R E C T O R Y M A N A G E M E N T 47

Copying a File

Copy an entire file using a single function, , which was introduced in
Chapter 1’s (Program 1–3) example.

 copies the named existing file and assigns the specified new name
to the copy. If a file with the new name already exists, it will be replaced only if

 is . also copies file metadata, such as creation
time.

Hard and Symbolic Links

Create a hard link between two files with the function, which is
similar to a UNIX hard link. With a hard link, a file can have two separate names.
Note that there is only one file, so a change to the file will be available regardless
of the name used to open the file.

The first two arguments, while in the opposite order, are used as in
. The two file names, the new name and the existing name, must occur in the

same file system volume, but they can be in different directories. The security
attributes, if any, apply to the new file name.

Windows Vista and other NT6 systems support a similar symbolic link func-
tion, but there is no symbolic link in earlier Windows systems.

ptg

48 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

 is the symbolic link that is created to
. Set to 0 if the target is a file, and set it to

 if it is a directory. is treated as an
absolute link if there is a device name associated with it. See MSDN for detailed
information about absolute and relative links.

Renaming and Moving Files

There is a pair of functions to rename, or “move,” a file. These functions also work
for directories, whereas and are restricted to files.

 fails if the new file already exists; use to overwrite
existing files.

Note: The suffix is common and represents an extended version of an exist-
ing function in order to provide additional functionality. Many extended functions
are not supported in earlier Windows versions.

The and parameters, especially the flags, are suffi-
ciently complex to require additional explanation:

 specifies the name of the existing file or directory.
 specifies the new file or directory name, which cannot already

exist in the case of . A new file can be on a different file system or drive,
but new directories must be on the same drive. If , the existing file is deleted.
Wildcards are not allowed in file or directory names. Specify the actual name.

 specifies options as follows:

ptg

F I L E A N D D I R E C T O R Y M A N A G E M E N T 49

• —Use this option to replace an existing file.

• —Use this option to ensure that the function does
not return until the copied file is flushed through to the disk.

• —When the new file is on a different volume, the
move is achieved with a followed by a . You cannot
move a file to a different volume without using this flag, and moving a file to
the same volume just involves renaming without copying the file data, which
is fast compared to a full copy.

• —This flag, which cannot be used in conjunc-
tion with , is restricted to administrators and en-
sures that the file move does not take effect until Windows restarts. Also, if the
new file name is null, the existing file will be deleted when Windows restarts.

UNIX pathnames do not include a drive or server name; the slash indicates the
system root. The Microsoft C library file functions also support drive names as
required by the underlying Windows file naming.

UNIX does not have a function to copy files directly. Instead, you must write a
small program or call to execute the command.

 is the UNIX equivalent of except that can also delete
directories.

 and are in the C library, and will fail when attempting to
move a file to an existing file name or a directory to a non-empty directory.

Directory Management

Creating or deleting a directory involves a pair of simple functions.

 points to a null-terminated string with the name of the directory
that is to be created or deleted. The security attributes, as with other functions,
should be for the time being; Chapter 15 describes file and object security.
Only an empty directory can be removed.

ptg

50 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

A process has a current, or working, directory, just as in UNIX. Furthermore,
each individual drive keeps a working directory. Programs can both get and set
the current directory. The first function sets the directory.

 is the path to the new current directory. It can be a relative path
or a fully qualified path starting with either a drive letter and colon, such as , or
a UNC name (such as).

If the directory path is simply a drive name (such as or), the working
directory becomes the working directory on the specified drive. For example, if the
working directories are set in the sequence

then the resulting working directory will be

The next function returns the fully qualified pathname into a specified buffer.

 is the character (not byte; the prefix denotes byte length) length
of the buffer for the directory name. The length must allow for the terminating
null character. points to the buffer to receive the pathname string.

Notice that if the buffer is too small for the pathname, the return value tells
how large the buffer should be. Therefore, the test for function failure should test
both for zero and for the result being larger than the argument.

Return: The string length of the pathname, or the required buffer
size (in characters including the terminating character) if the
buffer is not large enough; zero if the function fails.

ptg

C O N S O L E I / O 51

This method of returning strings and their lengths is common in Windows and
must be handled carefully. Program 2–6 illustrates a typical code fragment that
performs the logic. Similar logic occurs in other examples. The method is not
always consistent, however. Some functions return a Boolean, and the length
parameter is used twice; it is set with the length of the buffer before the call, and
the function changes the value. in Chapter 15 is one of
more complex functions in terms of returning results.

An alternative approach, illustrated with the function in
Program 15–4, is to make two function calls with a buffer memory allocation in
between. The first call gets the string length, which is used in the memory alloca-
tion. The second call gets the actual string. The simplest approach in this case is
to allocate a string holding characters.

Examples Using File and Directory Management Functions

 (Program 2–6) uses . Example programs in
Chapter 3 and elsewhere use other file and directory management functions.

Console I/O

Console I/O can be performed with and , but it is simpler to
use the specific console I/O functions, and . The
principal advantages are that these functions process generic characters ()
rather than bytes, and they also process characters according to the console mode,
which is set with the function.

Parameters

 identifies a console input or screen buffer, which must have
 access even if it is an input-only device.

 specifies how characters are processed. Each flag name indicates
whether the flag applies to console input or output. Five commonly used flags,
listed here, control behavior; they are all enabled by default.

Return: if and only if the function succeeds.

ptg

52 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

• —Specify that returns when it encoun-
ters a carriage return character.

• —Echo characters to the screen as they are read.

• —Process backspace, carriage return, and line
feed characters.

• —Process backspace, tab, bell, carriage return,
and line feed characters.

• —Enable line wrap for both normal and ech-
oed output.

If fails, the mode is unchanged and the function returns
. returns the error code number.

The and functions are similar to
and .

The parameters are nearly the same as with . The two length
parameters are in terms of generic characters rather than bytes, and
must be . Never use any of the reserved fields that occur in this and other
functions. is now self-explanatory. The next example (Program 2–
5) shows how to use and with generic strings and
how to take advantage of the console mode.

A process can have only one console at a time. Applications such as the ones
developed so far are normally initialized with a console. In many cases, such as a
server or GUI application, however, you may need a console to display status or
debugging information. There are two simple parameterless functions for this
purpose.

Return: if and only if the read succeeds.

ptg

E X A M P L E : P R I N T I N G A N D P R O M P T I N G 53

 detaches a process from its console. Calling
then creates a new one associated with the process’s standard input, output, and
error handles. will fail if the process already has a console; to
avoid this problem, precede the call with .

Note: Windows GUI applications do not have a default console and must
allocate one before using functions such as or to display
on a console. It’s also possible that server processes may not have a console.
Chapter 6 shows how to create a process without a console.

There are numerous other console I/O functions for specifying cursor position,
screen attributes (such as color), and so on. This book’s approach is to use only
those functions needed to get the examples to work and not to wander further
than necessary into user interfaces. It is easy to learn additional functions from
the MSDN reference material after you see the examples.

For historical reasons, Windows does not support character-oriented terminals in
the way that UNIX does, and not all the UNIX terminal functionality is replicated
by Windows. For example, UNIX provides functions for setting baud rates and
line control functions. Stevens and Rago dedicate a chapter to UNIX terminal I/O
(Chapter 11) and one to pseudo terminals (Chapter 19).

Serious Windows user interfaces are, of course, graphical, with mouse as well as
keyboard input. The GUI is outside the scope of this book, but everything we
discuss works within a GUI application.

Example: Printing and Prompting

The function, which appears in (Program 2–5), is a
useful utility that prompts the user with a specified message and then returns the
user’s response. There is an option to suppress the response echo. The function
uses the console I/O functions and generic characters. and

 are the other entries in this module; they can use any handle but are
normally used with standard output or error handles. The first function allows a
variable-length argument list, whereas the second one allows just one string and
is for convenience only. uses the , , and
functions in the Standard C library to process the variable-length argument list.

Example programs will use these functions and the generic C library func-
tions as convenient.

ptg

54 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

See Run 2–6 after Program 2–6 for sample outputs. Chapters 11 and 15 have ex-
amples using .

Program 2–5 Console Prompt and Print Utility Functions

ptg

E X A M P L E : P R I N T I N G T H E C U R R E N T D I R E C T O R Y 55

Notice that returns a Boolean success indicator. Further-
more, will return the error from the function that failed, but it’s
important to call , and hence before the

 calls.
Also, returns a carriage return and line feed, so the last step is

to insert a null character in the proper location over the carriage return. The call-
ing program must provide the parameter to prevent buffer overflow.

Example: Printing the Current Directory

 (Program 2–6) implements a version of the UNIX command . The
 value specifies the buffer size, but there is an error test to illustrate

.

Program 2–6 Printing the Current Directory

ptg

56 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

Run 2–6, shows the results, which appear on a single line. The Windows Com-
mand Prompt produces the first and last lines, whereas produces the middle
line.

Summary

Windows supports a complete set of functions for processing and managing files
and directories, along with character processing functions. In addition, you can
write portable, generic applications that can be built for either ASCII or Unicode
operation.

The Windows functions resemble their UNIX and C library counterparts in
many ways, but the differences are also apparent. Appendix B discusses portable
coding techniques. Appendix B also has a table showing the Windows, UNIX, and
C library functions, noting how they correspond and pointing out some of the sig-
nificant differences.

Run 2–6 Determining the Current Directory

ptg

E X E R C I S E S 57

Looking Ahead

The next step, in Chapter 3, is to discuss direct file access and to learn how to deal
with file and directory attributes such as file length and time stamps. Chapter 3
also shows how to process directories and ends with a discussion of the registry
management API, which is similar to the directory management API.

Additional Reading

NTFS and Windows Storage

Inside Windows Storage, by Dilip Naik, is a comprehensive discussion of the
complete range of Windows storage options including directly attached and net-
work attached storage. Recent developments, enhancements, and performance
improvements, along with internal implementation details, are all described.

Inside the Windows NT File System, by Helen Custer, and Windows NT File
System Internals, by Rajeev Nagar, are additional references, as is the previously
mentioned Windows Internals: Including Windows Server 2008 and Windows
Vista.

Unicode

Developing International Software, by Dr. International (that’s the name on the
book), shows how to use Unicode in practice, with guidelines, international stan-
dards, and culture-specific issues.

UNIX

Stevens and Rado cover UNIX files and directories in Chapters 3 and 4 and termi-
nal I/O in Chapter 11.

UNIX in a Nutshell, by Arnold Robbins et al., is a useful quick reference on
the UNIX commands.

Exercises

2–1. Write a short program to test the generic versions of and .

2–2. Modify the function in (Program 2–2) so that it uses
 rather than when the standard output handle is asso-

ciated with a console.

ptg

58 C H A P T E R 2 U S I N G T H E W I N D O W S F I L E S Y S T E M A N D C H A R A C T E R I / O

2–3. allows you to specify file access characteristics so as to
enhance performance. is an example. Use
this flag in (Program 2–4) and determine whether there is a
performance improvement for large files, including files larger than 4GB.
Also try after reading the MSDN
documentation carefully. Appendix C shows results on several Windows
versions and computers.

2–4. Run (Program 2–3) with and without defined. What is the ef-
fect, if any?

2–5. Compare the information provided by (in the C library) and
 for common errors such as opening a nonexistent file.

2–6. Test the (Program 2–5) function’s suppression of keyboard
echo by using it to ask the user to enter and confirm a password.

2–7. Determine what happens when performing console output with a mixture of
generic C library and Windows or calls. What
is the explanation?

2–8. Write a program that sorts an array of Unicode strings. Determine the
difference between the word and string sorts by using and

. Does produce different results from those of ?
The remarks under the function entry in the Microsoft on-
line help are useful.

2–9. Appendix C provides performance data for file copying and conversion
using different program implementations. Investigate performance with the
test programs on computers available to you. Also, if possible, investigate
performance using networked file systems, SANs, and so on, to understand
the impact of various storage architectures when performing sequential file
access.

ptg

59

C H A P T E R

3 Advanced File
and Directory
Processing, and
the Registry

File systems provide more than sequential processing; they must also provide ran-
dom access, file locking, directory processing, and file attribute management.
Starting with random file access, which is required by database, file management,
and many other applications, this chapter shows how to access files randomly at
any location and shows how to use Windows 64-bit file pointers to access files
larger than 4GB.

The next step is to show how to scan directory contents and how to manage
and interpret file attributes, such as time stamps, access, and size. Finally, file
locking protects files from concurrent modification by more than one process
(Chapter 6) or thread (Chapter 7).

The final topic is the Windows registry, a centralized database that contains
configuration information for applications and for Windows itself. Registry access
functions and program structure are similar to the file and directory management
functions, as shown by the final program example, so this short topic is at the
chapter’s end rather than in a separate chapter.

The 64-Bit File System

The Windows NTFS supports 64-bit file addresses so that files can, in principle,
be as long as 264 bytes. The 232-byte length limit of older 32-bit file systems, such
as FAT, constrains file lengths to 4GB (4 × 109 bytes). This limit is a serious con-
straint for numerous applications, including large database and multimedia sys-
tems, so any complete modern OS must support much larger files.

ptg

60 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

Files larger than 4GB are sometimes called very large or huge files, although
huge files have become so common that we’ll simply assume that any file could be
huge and program accordingly.

Needless to say, some applications will never need huge files, so, for many pro-
grammers, 32-bit file addresses will be adequate. It is, however, a good idea to
start working with 64-bit addresses from the beginning of a new development
project, given the rapid pace of technical change and disk capacity growth,1 cost
improvements, and application requirements.

Win32, despite the 64-bit file addresses and the support for huge files, is still a
32-bit OS API because of its 32-bit memory addressing. Win32 addressing limita-
tions are not a concern until Chapter 5.

File Pointers

Windows, just like UNIX, the C library, and nearly every other OS, maintains a
file pointer with each open file handle, indicating the current byte location in the
file. The next or operation will start transferring data
sequentially to or from that location and increment the file pointer by the number
of bytes transferred. Opening the file with sets the pointer to zero,
indicating the start of the file, and the handle’s pointer is advanced with each suc-
cessive read or write. The crucial operation required for random file access is the
ability to set the file pointer to an arbitrary value, using and

.
The first function, , is obsolete, as the handling of 64-bit file

pointers is clumsy. , one of a number of “extended”2 func-
tions, is the correct choice, as it uses 64-bit pointers naturally. Nonetheless, we
describe both functions here because is still common. In the fu-
ture, if the extended function is supported in NT5 and is actually superior, we
mention the nonextended function only in passing.

 shows, for the first time, how Windows handles addresses
in large files. The techniques are not always pretty, and is eas-
iest to use with small files.

1 Even inexpensive laptop computers contain 80GB or more of disk capacity, so “huge” files larger than
4GB are possible and sometimes necessary, even on small computers.
2 The extended functions have an “Ex” suffix and, as would be expected, provide additional functional-
ity. There is no consistency among the extended functions in terms of the nature of the new features or
parameter usage. For example, (Chapter 2) adds a new flag input parameter, while

 has a input and output parameters. The registry functions (end of
this chapter) have additional extended functions.

ptg

F I L E P O I N T E R S 61

Parameters

 is the handle of an open file with read or write access (or both).
 is the 32-bit signed distance to move or unsigned file

position, depending on the value of .
 points to the high-order portion of the move

distance. If this value is , the function can operate only on files whose length
is limited to 232–2. This parameter is also used to receive the high-order return
value of the file pointer.3 The low-order portion is the function’s return value.

 specifies one of three move modes.

• : Position the file pointer from the start of the file, interpreting
 as unsigned.

• : Move the pointer forward or backward from the current
position, interpreting as signed. Positive is forward.

• : Position the pointer backward or forward from the end of the file.

You can obtain the file length by specifying a zero-length move from the end of
file, although the file pointer is changed as a side effect.

The method of representing 64-bit file positions causes complexities because
the function return can represent both a file position and an error code. For exam-
ple, suppose that the actual position is location 232–1 (that is,) and
that the call also specifies the high-order move distance. Invoke to

3 Windows is not consistent, as can be seen by comparing with
. In some cases, there are distinct input and output parameters.

Return: The low-order (unsigned) of the new file pointer.
The high-order portion of the new file pointer goes to the

 indicated by (if non-).
In case of error, the return value is .

ptg

62 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

determine whether the return value is a valid file position or whether the function
failed, in which case the return value would not be . This explains why
file lengths are limited to 232–2 when the high-order component is omitted.

Another confusing factor is that the high- and low-order components are sepa-
rated and treated differently. The low-order address is treated as a call by value
and returned by the function, whereas the high-order address is a call by refer-
ence and is both input and output. is much easier to use, but,
first, we need to describe Windows 64-bit arithmetic.

 (in UNIX) and (in the C library) are similar to .
Both systems also advance the file position during read and write operations.

64-Bit Arithmetic

It is not difficult to perform the 64-bit file pointer arithmetic, and our example
programs use the Windows 64-bit data type, which is a union of
a (called) and two 32-bit quantities (, a , and

, a). supports all the arithmetic operations. There is
also a data type, which is unsigned. The guidelines for using

 data are:

• and other functions require parameters.

• Perform arithmetic on the component of a value.

• Use the and components as required; this is illustrated in
an upcoming example.

SetFilePointerEx

 is straightforward, requiring a input for
the requested position and a output for the actual position. The
return result is a Boolean to indicate success or failure.

ptg

F I L E P O I N T E R S 63

 can be , in which case, the new file pointer is not re-
turned. has the same values as for .

Specifying File Position with an Overlapped Structure

Windows provides another way to specify the read/write file position. Recall that
the final parameter to both and is the address of an
overlapped structure, and this value has always been in the previous
examples. Two members of this structure are and . You can
set the appropriate values in an overlapped structure, and the I/O operation can
start at the specified location. The file pointer is changed to point past the last
byte transferred, but the overlapped structure values do not change. The
overlapped structure also has a handle member used for asynchronous overlapped
I/O (Chapter 14), , that must be for now.

Caution: Even though this example uses an overlapped structure, this is not
overlapped I/O, which is covered in Chapter 14.

The overlapped structure is especially convenient when updating a file record,
as the following code fragment illustrates; otherwise, separate

 calls would be required before the and calls. The
 field is the last of five fields, as shown in the initialization statement. The

 data type represents the file position.

If the file handle was created with the
 flag, then both the file position and the record size (byte count) must

be multiples of the disk volume’s sector size. Obtain physical disk information,
including sector size, with .

ptg

64 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

Note: You can append to the end of the file without knowing the file length.
Just specify on both and before performing the
write.

Overlapped structures are used again later in this chapter to specify file lock
regions and in Chapter 14 for asynchronous I/O and random file access.

Getting the File Size

Determine a file’s size by positioning 0 bytes from the end and using the file
pointer value returned by . Alternatively, you can use a spe-
cific function, , for this purpose. , like

, returns the 64-bit value as a .

 (now obsolete) and require that the file have an
open handle. It is also possible to obtain the length by name.

 returns the size of the compressed file, and , discussed
in the upcoming “File Attributes and Directory Processing” section, gives the exact
size of a named file.

Setting the File Size, File Initialization, and Sparse Files

The function resizes the file using the current value of the file
pointer to determine the length. A file can be extended or truncated. With exten-
sion, the contents of the extended region are not defined. The file will actually
consume the disk space and user space quotas unless the file is a sparse file. Files
can also be compressed to consume less space. Exercise 3–1 explores this topic.

 sets the physical end of file beyond the current “logical”
end. The file’s tail, which is the portion between the logical and physical ends, con-
tains no valid data. You can shorten the tail by writing data past the logical end.

With sparse files, disk space is consumed only as data is written. A file, direc-
tory, or volume can be specified to be sparse by the administrator. Also, the

Return: The file size is in . A return indicates
an error; check .

ptg

E X A M P L E : R A N D O M R E C O R D U P D A T E S 65

 function can use the flag to specify that
an existing file is sparse. Program 3–1 illustrates a situation where a sparse file
can be used conveniently. does not apply to sparse files.

NTFS files and file tails are initialized to zeros for security.
Notice that the call is not the only way to extend a file. You

can also extend a file using many successive write operations, but this will result
in more fragmented file allocation; allows the OS to allocate
larger contiguous disk units.

Example: Random Record Updates

Program 3–1, , maintains a fixed-size file of fixed-size records. The
file header contains the number of nonempty records in the file along with the file
record capacity. The user can interactively read, write (update), and delete
records, which contain time stamps, a text string, and a count to indicate how
many times the record has been modified. A simple and realistic extension would
be to add a key to the record structure and locate records in the file by applying a
hash function to the key value.

The program demonstrates file positioning to a specified record and shows
how to perform 64-bit arithmetic using the Windows data type.
One error check is included to illustrate file pointer logic. This design also illus-
trates file pointers, multiple overlapped structures, and file updating with 64-bit
file positions.

The total number of records in the file is specified on the command line; a
large number will create a very large or even huge file, as the record size is about
300 bytes. Some simple experiments will quickly show that large files should be
sparse; otherwise, the entire file must be allocated and initialized on the disk,
which could consume considerable time and disk space. While not shown in the
Program 3–1 listing, the program contains optional code to create a sparse file.
That code will not function on systems that do not support sparse files, such as
Windows XP Home Edition.

The Examples file (on the book’s Web site) provides three related programs:
 is another example of random file access; is a simpler version of

 that can only read records; and (included with the pro-
grams for Chapter 14 in Examples, although not in the text) also illustrates ran-
dom file access.

Note: Program 3–1 uses the data type and the
function. While we have not discussed these, the usage is straightforward.

ptg

66 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

Program 3–1 Direct File Access

ptg

E X A M P L E : R A N D O M R E C O R D U P D A T E S 67

ptg

68 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

Run 3–1 shows working with a 6GB file (20 million records).
There are write, read, update, and delete operations. The command at the
end shows the file size. The file is not sparse, and writing record number
19,000,000 required about two minutes on the test machine. During this time pe-
riod, the Windows Resource Monitor showed high disk utilization.

Note: The output messages shown in Program 3–1 were shortened and are not
exactly the same as those in the Run 3–1 screenshot.

Caution: If you run this program on your computer, do not create such a large
number of records unless you have sufficient free disk space. Initially, it’s safer to
use just a few hundred records until you are confident that the program is operat-
ing correctly. Furthermore, while Run 3–1 worked well on a desktop system with
plentiful memory and disk storage, it hung on a laptop. Laptop operation was suc-
cessful, however, with a 600MB file (2 million records).

ptg

E X A M P L E : R A N D O M R E C O R D U P D A T E S 69

Run 3–1 Writing, Reading, and Deleting Records

ptg

70 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

File Attributes and Directory Processing

This section shows how to search a directory for files and other directories that
satisfy a specified name pattern and, at the same time, obtain file attributes.
Searches require a search handle provided by . Obtain specific files
with , and terminate the search with . There is also an
extended version, , which has more search options, such as
allowing for case sensitivity. An exercise suggests exploring the extended function.

 examines both subdirectory and file names, looking for a
name match. The returned is for use in subsequent searches. Note that it
is not a kernel handle.

Parameters

 points to a directory or pathname that can contain wildcard charac-
ters (and). Search for a single specific file by omitting wildcard characters.

 points to a structure (the “ ” part of the name
is misleading, as this can be used on 64-bit computers) that contains information
about the first file or directory to satisfy the search criteria, if any are found.

 has the following structure:

Return: A search handle. indicates
failure.

ptg

F I L E A T T R I B U T E S A N D D I R E C T O R Y P R O C E S S I N G 71

Test for the values described with along with
some additional values, such as and

, which does not set. The three file times (cre-
ation, last access, and last write) are described in an upcoming section. The file size
fields, giving the current file length, are self-explanatory. is not the path-
name; it is the file name by itself. is the DOS 8.3 (including
the period) version of the file name; this information is rarely used and is appropriate
only to determine how a file would be named on an old FAT16 file system.

Frequently, the requirement is to scan a directory for files that satisfy a name
pattern containing and wildcard characters. To do this, use the search handle
obtained from , which retains information about the search
name, and call .

 will return in case of invalid arguments or if no more
matching f i les are found, in which case wi l l re turn

.
When the search is complete, close the search handle. Do not use .

Closing a search handle will cause an exception. Instead, use the following:

The function obtains the same information
for a specific file, specified by an open file handle. It also returns a field,

, which indicates the number of hard links set by ;
this value is one when the file is first created, is increased by one for each

 call targeting the file, and is decreased by one when either a
hard link name or the original name is deleted.

The method of wildcard expansion is necessary even in pro-
grams executed from the MS-DOS prompt because the DOS shell does not expand
wildcards.

ptg

72 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

Pathnames

You can obtain a file’s full pathname using .
 returns the name in DOS 8.3 format, assuming that the volume supports

short names.
NT 5.1 introduced , which allows you to change the exist-

ing short name of a file or directory. This can be convenient because the existing
short names are often difficult to interpret.

Other Methods of Obtaining File and Directory Attributes

The and functions can obtain the following file
attribute information: attribute flags, three time stamps, and file size. There are
several other related functions, including one to set attributes, and they can deal
directly with the open file handle rather than scan a directory or use a file name.
Three such functions, , , and , were
described earlier in this chapter.

Distinct functions are used to obtain the other attributes. For example, to
obtain the time stamps of an open file, use the function.

The file times here and in the structure are 64-bit
unsigned integers giving elapsed 100-nanosecond units (107 units per second)
from a base time (January 1, 1601), expressed as Universal Coordinated Time
(UTC).4 There are several convenient functions for dealing with times.

• (not described here; see MSDN or Program 3–2)
breaks the file time into individual units ranging from years down to seconds
and milliseconds. These units are suitable, for example, when displaying or
printing times.

4 Do not, however, expect to get 100-nanosecond precision; precision will vary depending on hardware
characteristics.

ptg

F I L E A T T R I B U T E S A N D D I R E C T O R Y P R O C E S S I N G 73

• reverses the process, converting time expressed in
these individual units to a file time.

• determines whether one file time is less than (–), equal
to (), or greater than () another.

• Change the time stamps with ; use for times that are not
to be changed. NTFS supports all three file times, but the FAT gives an accu-
rate result only for the last access time.

• and convert
between UTC and the local time.

, not described in detail here, distinguishes among disk files,
character files (actually, devices such as printers and consoles), and pipes (see
Chapter 11). The file, again, is specified with a handle.

The function uses the file or directory name, and it
returns just the information.

The attributes can be tested for appropriate combinations of several mask val-
ues. Some attributes, such as the temporary file attribute, are originally set with

. The attribute values include the following:

•

•

•

•

Be certain to test the return value for failure (,
which is) before trying to determine the attributes. This value would
make it appear as if all values were set.

The function changes these attributes in a named file.

Return: The file attributes, or in
case of failure.

ptg

74 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

, , and in UNIX correspond to the three functions.
The function obtains file size and times, in addition to owning user and group in-
formation that relates to UNIX security. and are variations. These func-
tions can also obtain type information. sets file times in UNIX. There is no
UNIX equivalent to the temporary file attribute.

Temporary File Names

The next function creates names for temporary files. The name can be in any spec-
ified directory and must be unique.

 gives a unique file name, with the suffix, in a
specified directory and optionally creates the file. This function is used extensively
in later examples (Program 6–1, Program 7–1, and elsewhere).

Parameters

 is the directory for the temporary file. “ ” is a typical value specify-
ing the current directory. Alternatively, use , a Windows function
not described here, to give the name of a directory dedicated to temporary files.

 is the prefix of the temporary name. You can only use 8-bit
ASCII characters. is normally zero so that the function will generate a
unique four-digit suffix and will create the file. If this value is nonzero, the file is not
created; do that with , possibly using .

 points to the buffer that receives the temporary file name.
The buffer’s byte length should be at least the same value as . The re-
sulting pathname is a concatenation of the path, the prefix, the four-digit hex
number, and the suffix.

Return: A unique numeric value used to create the file name. This
will be if is nonzero. On failure, the return
value is zero.

ptg

E X A M P L E : L I S T I N G F I L E A T T R I B U T E S 75

Example: Listing File Attributes

It is now time to illustrate the file and directory management functions. Program 3–2,
, shows a limited version of the UNIX directory listing command, which is

similar to the Windows command. can show file modification times and the
file size, although this version gives only the low order of the file size.

The program scans the directory for files that satisfy the search pattern. For
each file located, the program shows the file name and, if the option is speci-
fied, the file attributes. This program illustrates many, but not all, Windows di-
rectory management functions.

The bulk of Program 3–2 is concerned with directory traversal. Notice that
each directory is traversed twice—once to process files and again to process sub-
directories—in order to support the recursive option.

Program 3–2, as listed here, will properly carry out a command with a relative
pathname such as:

It will not work properly, however, with an absolute pathname such as:

because the program, as listed, depends on setting the directory relative to the
current directory. The complete solution (in Examples) analyzes pathnames and
will also carry out the second command.

An exercise suggests modifying this program to remove the
 calls so as to avoid the risk of program failures leaving you in an un-

expected state.

Program 3–2 File Listing and Directory Traversal

ptg

76 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

ptg

E X A M P L E : L I S T I N G F I L E A T T R I B U T E S 77

ptg

78 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

Example: Setting File Times

Program 3–3 implements the UNIX command, which changes file access
and modifies times to the current value of the system time. Exercise 3–12
enhances so that the new file time is a command line option, as with the
actual UNIX command.

The program uses , which is more convenient
than calling (used in Program 3–1) followed by

. See MSDN for more information, although these functions are
straightforward.

Run 3–3 shows touch operation, changing the time of an existing file and cre-
ating a new file.

Run 3–2 Listing Files and Directories

ptg

E X A M P L E : S E T T I N G F I L E T I M E S 79

Program 3–3 Setting File Times

Run 3–3 Changing File Time and Creating New Files

ptg

80 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

File Processing Strategies

An early decision in any Windows development or porting project is to select
whether to perform file processing with the C library or with the Windows func-
tions. This is not an either/or decision because the functions can be mixed (with
caution) even when you’re processing the same file.

The C library offers several distinct advantages, including the following.

• The code will be portable to non-Windows systems.

• Convenient line- and character-oriented functions that do not have direct
Windows equivalents simplify string processing.

• C library functions are generally higher level and easier to use than Windows
functions.

• The line and stream character-oriented functions can easily be changed to
generic calls, although the portability advantage will be lost.

ptg

F I L E L O C K I N G 81

Nonetheless, there are some limitations to the C library. Here are some
examples.

• The C library cannot manage or traverse directories, and it cannot obtain or
set most file attributes.

• The C library uses 32-bit file position in the function, although Win-
dows does provide a proprietary function. Thus, while it can read
huge files sequentially, it is not possible to position arbitrarily in a huge file,
as is required, for instance, by Program 3–1.

• Advanced features such as file security, memory-mapped files, file locking,
asynchronous I/O, and interprocess communication are not available with the
C library. Some of the advanced features provide performance benefits, as
shown in Chapter 5 and Appendix C.

Another possibility is to port existing UNIX code using a compatibility library.
Microsoft C provides a limited compatibility library with many, but not all, UNIX
functions. The Microsoft UNIX library includes I/O functions, but most process
management and other functions are omitted. Functions are named with an
underscore prefix—for example, , , , and so on.

Decisions regarding the use and mix of C library, compatibility libraries, and
the Windows API should be driven by project requirements. Many of the Windows
advantages are shown in the following chapters, and the performance figures in
Appendix C are useful when performance is a factor.

File Locking

An important issue in any computer running multiple processes is coordination
and synchronization of access to shared objects, such as files.

Windows can lock files, in whole or in part, so that no other process (running
program) or thread within the process can access the locked file region. File locks
can be read-only (shared) or read-write (exclusive). Most importantly, the locks
belong to the process. Any attempt to access part of a file (using or

) in violation of an existing lock will fail because the locks are manda-
tory at the process level. Any attempt to obtain a conflicting lock will also fail even
if the process already owns the lock. File locking is a limited form of synchroniza-
tion between concurrent processes and threads; synchronization is covered in
much more general terms starting in Chapter 8.

The most general function is , and there is a less general func-
tion, .

ptg

82 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

 is a member of the extended I/O class of functions, and the
overlapped structure, used earlier to specify file position to and

, is necessary to specify the 64-bit file position and range of the file
region to be locked.

 locks a byte range in an open file for either shared (multiple
readers) or exclusive (one reader-writer) access.

Parameters

 is the handle of an open file. The handle must have at least .
 determines the lock mode and whether to wait for the lock to become

available.
, if set, indicates a request for an exclusive,

read-write lock. Otherwise, it requests a shared (read-only) lock.
, if set, specifies that the function should

return immediately with if the lock cannot be acquired. Otherwise, the call
blocks until the lock becomes available.

 must be . The two parameters with the length of the byte range
are self-explanatory.

 points to an data structure containing the start
of the byte range. The overlapped structure contains three data members that
must be set (the others are ignored); the first two determine the start location for
the locked region.

• (this is the correct name; not).

• .

• should be set to .

A file lock is removed using a corresponding call; all the same
parameters are used except .

ptg

F I L E L O C K I N G 83

You should consider several factors when using file locks.

• The unlock must use exactly the same range as a preceding lock. It is not pos-
sible, for example, to combine two previous lock ranges or unlock a portion of a
locked range. An attempt to unlock a region that does not correspond exactly
with an existing lock will fail; the function returns and the system
error message indicates that the lock does not exist.

• Locks cannot overlap existing locked regions in a file if a conflict would result.

• It is possible to lock beyond the range of a file’s length. This approach could be
useful when a process or thread extends a file.

• Locks are not inherited by a newly created process.

• The lock and unlock calls require that you specify the lock range start and size
as separate 32-bit integers. There is no way to specify these values directly
with values as there is with .

Table 3–1 shows the lock logic when all or part of a range already has a lock.
This logic applies even if the lock is owned by the same process that is making the
new request.

Table 3–1 Lock Request Logic

Requested Lock Type

Existing Lock Shared Lock Exclusive Lock

None Granted Granted

Shared lock (one or more) Granted Refused

Exclusive lock Refused Refused

ptg

84 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

Table 3–2 shows the logic when a process attempts a read or write operation
on a file region with one or more locks, owned by a separate process, on all or part
of the read-write region. A failed read or write may take the form of a partially
completed operation if only a portion of the read or write record is locked.

Read and write operations are normally in the form of and
 calls or their extended versions, and (Chapter

14). Diagnosing a read or write failure requires calling .
Accessing memory mapped to a file is another form of file I/O: see Chapter 5. Lock

conflicts are not detected at the time of memory reference; rather, they are detected at
the time that the function is called. This function makes a part of
the file available to the process, so the lock must be checked at that time.

The function is a legacy, limited, special case and is a form of advi-
sory locking. Only exclusive access is available, and returns immedi-
ately. That is, does not block. Test the return value to determine
whether you obtained the lock.

Releasing File Locks

Every successful call must be followed by a single matching call to
 (the same is true for and). If a program

fails to release a lock or holds the lock longer than necessary, other programs may
not be able to proceed, or, at the very least, their performance will be negatively
impacted. Therefore, programs should be carefully designed and implemented so
that locks are released as soon as possible, and logic that might cause the program
to skip the unlock should be avoided. Chapter 8 discusses this same issue with re-
gard to mutex and locks.

Table 3–2 Locks and I/O Operation

I/O Operation

Existing Lock Read Write

None Succeeds Succeeds

Shared lock (one or more) Succeeds. It is not
necessary for the calling
process to own a lock on
the file region.

Fails

Exclusive lock Succeeds if the calling
process owns the lock.
Fails otherwise.

Succeeds if the calling
process owns the lock.
Fails otherwise.

ptg

F I L E L O C K I N G 85

Termination handlers (Chapter 4) are a useful way to ensure that the unlock
is performed.

Lock Logic Consequences

Although the file lock logic in Tables 3–1 and 3–2 is natural, it has consequences
that may be unexpected and cause unintended program defects. Here are some ex-
amples.

• Suppose that process A and process B periodically obtain shared locks on a
file, and process C blocks when attempting to gain an exclusive lock on the
same file after process A gets its shared lock. Process B may now gain its
shared lock even though C is still blocked, and C will remain blocked even
after A releases the lock. C will remain blocked until all processes release
their shared locks even if they obtained them after C blocked. In this scenario,
it is possible that C will be blocked forever even though all the other processes
manage their shared locks properly.

• Assume that process A has a shared lock on the file and that process B
attempts to read the file without obtaining a shared lock first. The read will
still succeed even though the reading process does not own any lock on the file
because the read operation does not conflict with the existing shared lock.

• These statements apply both to entire files and to file regions.

• File locking can produce deadlocks in the same way as with mutual exclusion
locks (see Chapter 8 for more on deadlocks and their prevention).

• A read or write may be able to complete a portion of its request before encoun-
tering a conflicting lock. The read or write will return , and the byte
transfer count will be less than the number requested.

Using File Locks

File locking examples are deferred until Chapter 6, which covers process manage-
ment. Programs 6–4, 6–5, and 6–6 use locks to ensure that only one process at a
time can modify a file.

UNIX has advisory file locking; an attempt to obtain a lock may fail (the logic is
the same as in Table 3–1), but the process can still perform the I/O. Therefore,
UNIX can achieve locking between cooperating processes, but any other process
can violate the protocol.

To obtain an advisory lock, use options to the function. The commands (the
second parameter) are , (to wait), and . An addi-

ptg

86 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

tional block data structure contains a lock type that is one of , ,
or and the range.

Mandatory locking is also available in some UNIX systems using a file’s
 and , both using .

UNIX file locking behavior differs in many ways. For example, locks are inherited
through an call.

The C library does not support locking, although Visual C++ does supply non-
standard locking extensions.

The Registry

The registry is a centralized, hierarchical database for application and system
configuration information. Access to the registry is through registry keys, which
are analogous to file system directories. A key can contain other keys or key/value
pairs, where the key/value pairs are analogous to directory names and file names.
Each value under a key has a name, and for each key/value pair, corresponding
data can be accessed and modified.

The user or administrator can view and edit the registry contents through the
registry editor, using the command. Alternatively, programs can man-
age the registry through the registry API functions described in this section.

Note: Registry programming is discussed here due to its similarity to file
processing and its importance in some, but not all, applications. The example will
be a straightforward modification of the example. This section could, how-
ever, be a separate short chapter. Therefore, if you are not concerned with registry
programming, skip this section.

The registry contains information such as the following and is stored hierar-
chically in key/value pairs.

• Windows version number, build number, and registered user. However, pro-
grams usually access this information through the Windows API, as we do in
Chapter 6 (the program, available in the Examples).

• Similar information for every properly installed application.

• Information about the computer’s processor type, number of processors,
memory, and so on.

• User-specific information, such as the home directory and application
preferences.

• Security information such as user account names.

• Installed services (Chapter 13).

ptg

T H E R E G I S T R Y 87

• Mappings from file name extensions to executable programs. These mappings
are used by the user interface shell when the user clicks on a file icon. For ex-
ample, the and extensions might be mapped to Microsoft Word.

UNIX systems store similar information in the directory and files in the
user’s home directory. The registry centralizes all this information in a uniform
way. In addition, the registry can be secured using the security features described
in Chapter 15.

The registry management API is described here, but the detailed contents and
meaning of the various registry entries are beyond the book’s scope. Nonetheless,
Figure 3–1 shows a typical view from the registry editor and gives an idea of the
registry structure and contents.

Figure 3–1 The Registry Editor

ptg

88 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

The specific information regarding the host machine’s processor is on the right
side. The bottom of the left side shows that numerous keys contain information
about the software applications on the host computer. Notice that every key must
have a default value, which is listed before any of the other key/value pairs.

Registry implementation, including registry data storage and retrieval, is also
beyond the book’s scope; see the reference information at the end of the chapter.

Registry Keys

Figure 3–1 shows the analogy between file system directories and registry keys. Each
key can contain other keys or a sequence of values associated with a key. Whereas a
file system is accessed through pathnames, the registry is accessed through keys and
value names. Several predefined keys serve as entry points into the registry.

1. stores physical information about the machine, along
with information about installed software. Installed software information is
generally created in subkeys of the form

.

2. defines user configuration information.

3. contains current settings, such as display resolution
and fonts.

4. contains subordinate entries to define mappings from
file extensions to classes and to applications used by the shell to access objects
with the specified extension. All the keys necessary for Microsoft’s Component
Object Model (COM) are also subordinate to this key.

5. contains user-specific information, including environment
variables, printers, and application preferences that apply to the current user.

Registry Management

Registry management functions can query and modify key/value pairs and data
and also create new subkeys and key/value pairs. Key handles of type are
used both to specify a key and to obtain new keys.5 Values are typed; there are
several types to select from, such as strings, double words, and expandable strings
whose parameters can be replaced with environment variables.

5 It would be more convenient and consistent if the type were used for registry management.
There are several other exceptions to standard Windows practice that are based on Windows history.

ptg

R E G I S T R Y M A N A G E M E N T 89

Key Management

Key management functions allow you to open named keys, enumerate subkeys of
an open key, and create new keys.

RegOpenKeyEx

The first function, , opens a named subkey. Starting from one of
the predefined reserved key handles, you can traverse the registry and obtain a
handle to any subordinate key.

The parameters for this first function are explained individually. For later func-
tions, as the conventions become familiar, it is sometimes sufficient to survey
them quickly.

 identifies a currently open key or one of the predefined reserved key
handles. points to a variable of type that is to receive the handle
to the newly opened key.

 is the subkey name you want to open. The subkey name can be a
path, such as . A subkey name
causes a new, duplicate key for to be opened.

 is reserved and must be .
 is the access mask describing the security for the new key.

Access constants include , , , and
.

The return is normally . Any other result indicates an error.
Close an open key handle with , which takes the handle as its single
parameter.

RegEnumKeyEx

 enumerates subkey names of an open registry key, much as
 and enumerate directory contents. This function

retrieves the key name, class string (rarely used), and time of last modification.

ptg

90 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

 should be on the first call and then should be incremented on each
subsequent call. The value name and its size, along with the class string and its
size, are returned. Note that there are two count parameters, (the sub-
key name) and , which are used for both input and output for buffer size.
This behavior is familiar from (Chapter 2), and we’ll see it
again with . and are, however, rarely used
and should almost always be .

The function returns or an error number.

RegCreateKeyEx

You can also create new keys using . Keys can be given security
attributes in the same way as with directories and files (Chapter 15).

The individual parameters are as follows:

• is the name of the new subkey under the open key indicated by the
handle .

ptg

R E G I S T R Y M A N A G E M E N T 91

• is a user-defined class type for the key. Use , as recommended
by MSDN.

• The flag is usually (or, equivalently, ,
the default). Another, mutually exclusive value is .
Nonvolatile registry information is stored in a file and preserved when Windows
restarts. Volatile registry keys are kept in memory and will not be restored.

• is the same as for .

• can be or can point to a security attribute.
The rights can be selected from the same values as those used with

.

• points to a that indicates whether the key already
existed () or was created (

).

To delete a key, use . The two parameters are an open key
handle and a subkey name.

Value and Data Management

These functions allow you to get and set the data corresponding to a value name.

RegEnumValue

 enumerates the value names and corresponding data for a speci-
fied open key. Specify an , originally , which is incremented in subsequent
calls. On return, you get the string with the value name as well as its size. You
also get the data and its type and size.

ptg

92 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

The data is returned in the buffer indicated by . The result size can be
found from .

The data type, pointed to by , has numerous possibilities, including
, , (a string), and (an expandable

string with parameters replaced by environment variables). See MSDN for a list of all
the data types.

Test the function’s return result to determine whether you have enumerated
all the keys. The result will be if you have found a valid key.

 is similar except that you specify a value name rather
than an index. If you know the value names, you can use this function. If you do
not know the names, you can scan with .

RegSetValueEx

Set the data corresponding to a named value within an open key using
, supplying the key, value name, data type, and data.

Finally, delete named values using the function . There are
just two parameters: an open registry key and the value name, just as in the first
two parameters.

Example: Listing Registry Keys and Contents

Program 3–4, , is a modification of Program 3–2 (, the file and directory
listing program); it processes registry keys and key/value pairs rather than
directories and files.

Program 3–4 Listing Registry Keys and Contents

ptg

E X A M P L E : L I S T I N G R E G I S T R Y K E Y S A N D C O N T E N T S 93

ptg

94 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

ptg

E X A M P L E : L I S T I N G R E G I S T R Y K E Y S A N D C O N T E N T S 95

ptg

96 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

Run 3–4 shows operation, including using the option. The option
also works, but examples require a lot of vertical space and are omitted.

Summary

Chapters 2 and 3 described all the important basic functions for dealing with files,
directories, and console I/O. Numerous examples show how to use these functions
in building typical applications. The registry is managed in much the same way as
the file system, as the final example shows.

Later chapters will deal with advanced I/O, such as asynchronous operations
and memory mapping.

Run 3–4 Listing Registry Keys, Values, and Data

ptg

E X E R C I S E S 97

Looking Ahead

Chapter 4, Exception Handling, simplifies error and exception handling and
extends the function to handle arbitrary exceptions.

Additional Reading

See Jerry Honeycutt’s Microsoft Windows Registry Guide for information on regis-
try programming and registry usage.

Exercises

3–1. Use the function to determine how the different Win-
dows versions allocate file space sparsely. For instance, create a new file, set
the file pointer to a large value, set the file size, and investigate the free space
using . The same Windows function can also be used to
determine how the disk is configured into sectors and clusters. Determine
whether the newly allocated file space is initialized. , provided in
the Examples file, is the solution. Compare the results for NT5 and NT6. It is
also interesting to investigate how to make a file be sparse.

3–2. What happens if you attempt to set a file’s length to a size larger than the
disk? Does Windows fail gracefully?

3–3. Modify the program provided in the Examples file so that it does
not use ; use overlapped structures. Also be sure that it
works properly with files larger than 4GB.

3–4. Examine the “number of links” field obtained using the function
. Is its value always ? Do the link counts

appear to count hard links and links from parent directories and subdirecto-
ries? Does Windows open the directory as a file to get a handle before using
this function? What about the shortcuts supported by the user interface?

3–5. Program 3–2 () checks for “ ” and “ ” to detect the names of the cur-
rent and parent directories. What happens if there are actual files with
these names? Can files have these names?

3–6. Does Program 3–2 list local times or UCT? If necessary, modify the program
to give the results in local time.

3–7. Enhance Program 3–2 () so that it also lists the “ ” and “ ” (current
and parent) directories (the complete program is in the Examples file). Also,

ptg

98 C H A P T E R 3 A D V A N C E D F I L E A N D D I R E C T O R Y P R O C E S S I N G , A N D T H E R E G I S T R Y

add options to display the file creation and last access times along with the
last write time.

3–8. Further enhance Program 3–2 () to remove all uses of
. This function is undesirable because an exception or other

fault could leave you in an expected working directory.

3–9. Create a file deletion command, , by modifying the func-
tion in Program 3–2. A solution is in the Examples file.

3–10. Enhance the file copy command, , from Chapter 1 so that it will copy
files to a target directory. Further extensions allow for recursive copying
(option) and for preserving the modification time of the copied files
(option). Implementing the recursive copy option will require that you
create new directories.

3–11. Write an command, similar to the UNIX command of the same name, which
will move a complete directory. One significant consideration is whether the
target is on a different drive from that of the source file or directory. If it is,
copy the file(s); otherwise, use .

3–12. Enhance Program 3–3 () so that the new file time is specified on the
command line. The UNIX command allows the time stamp to appear
(optionally) after the normal options and before the file names. The format for
the time is [, where the uppercase is the month and is for
minutes.

3–13. Program 3–1 () is written to work with large NTFS file sys-
tems. If you have sufficient free disk space, test this program with a huge file
(length greater than 4GB, and considerably larger if possible); see Run 3–2.
Verify that the 64-bit arithmetic is correct. It is not recommended that you
perform this exercise on a network drive without permission from the net-
work administrator. Don’t forget to delete the test file on completion; disk
space is cheap, but not so cheap that you want to leave orphaned huge files.

3–14. Write a program that locks a specified file and holds the lock for a long period
of time (you may find the function useful). While the lock is held, try to
access the file (use a text file) with an editor. What happens? Is the file prop-
erly locked? Alternatively, write a program that will prompt the user to spec-
ify a lock on a test file. Two instances of the program can be run in separate
windows to verify that file locking works as described. in the
Examples file is a solution to this exercise.

3–15. Investigate the Windows file time representation in . It uses 64
bits to count the elapsed number of 100-nanosecond units from January 1,

ptg

E X E R C I S E S 99

1601. When will the time expire? When will the UNIX file time representa-
tion expire?

3–16. Write an interactive utility that will prompt the user for a registry key name
and a value name. Display the current value and prompt the user for a new
value. The utility could use command prompt and commands to illus-
trate the similarities (and differences) between the registry and file systems.

3–17. This chapter, along with most other chapters, describes the most important
functions. There are often other functions that may be useful. The MSDN
pages for each function provide links to related functions. Examine several,
such as , , ,

, and . Some of these functions are not avail-
able in all Windows versions.

ptg

This page intentionally left blank

ptg

101

C H A P T E R

4 Exception
Handling

Windows Structured Exception Handling (SEH) is the principal focus of this chap-
ter, which also describes console control handlers and vectored exception handling.

SEH provides a robust mechanism that allows applications to respond to
unexpected asynchronous events, such as addressing exceptions, arithmetic
faults, and system errors. SEH also allows a program to exit from anywhere in a
code block and automatically perform programmer-specified processing and error
recovery. SEH ensures that the program will be able to free resources and perform
other cleanup processing before the block, thread, or process terminates either un-
der program control or because of an unexpected exception. Furthermore, SEH
can be added easily to existing code, often simplifying program logic.

SEH will prove to be useful in the examples and also will allow extension of
the error-processing function from Chapter 2. SEH is usually con-
fined to C programs. C++, C#, and other languages have very similar mechanisms,
however, and these mechanisms build on the SEH facilities presented here.

Console control handlers, also described in this chapter, allow a program to detect ex-
ternal signals such as a from the console or the user logging off or shutting down
the system. These signals also provide a limited form of process-to-process signaling.

The final topic is vectored exception handling. This feature allows the user to
specify functions to be executed directly when an exception occurs, and the func-
tions are executed before SEH is invoked.

Exceptions and Their Handlers

Without some form of exception handling, an unintended program exception, such
as dereferencing a pointer or division by zero, will terminate a program
immediately without performing normal termination processing, such as deleting
temporary files. SEH allows specification of a code block, or exception handler,
which can delete the temporary files, perform other termination operations, and
analyze and log the exception. In general, exception handlers can perform any re-
quired cleanup operations before leaving the code block.

ptg

102 C H A P T E R 4 E X C E P T I O N H A N D L I N G

Normally, an exception indicates a fatal error with no recovery, and the
thread (Chapter 7), or even the entire process, should terminate after the handler
reports the exception. Do not expect to be able to resume execution from the point
where the exception occurs. Nonetheless, we will show an example (Program 4–2)
where a program can continue execution.

SEH is supported through a combination of Windows functions, compiler-supported
language extensions, and run-time support. The exact language support may vary; the
examples here were all developed for Microsoft C.

Try and Except Blocks

The first step in using SEH is to determine which code blocks to monitor and pro-
vide them with exception handlers, as described next. It is possible to monitor an
entire function or to have separate exception handlers for different code blocks
and functions.

A code block is a good candidate for an exception handler in situations that
include the following, and catching these exceptions allows you to detect bugs and
avoid potentially serious problems.

• Detectable errors, including system call errors, might occur, and you need to
recover from the error rather than terminate the program.

• There is a possibility of dereferencing pointers that have not been properly
initialized or computed.

• There is array manipulation, and it is possible for array indices to go out of
bounds.

• The code performs floating-point arithmetic, and there is concern with zero
divides, imprecise results, and overflows.

• The code calls a function that might generate an exception intentionally, be-
cause the function arguments are not correct, or for some other occurrence.

SEH uses “try” and “except” blocks. In the examples in this chapter and
throughout the book, once you have decided to monitor a block, create the try and
except blocks as follows:

ptg

E X C E P T I O N S A N D T H E I R H A N D L E R S 103

Note that and are keywords that the C compiler recognizes;
however, they are not part of standard C.

The try block is part of normal application code. If an exception occurs in the
block, the OS transfers control to the exception handler, which is the code in the
block associated with the clause. The value of the
determines the actions that follow.

The exception could occur within a block embedded in the try block, in which
case the run-time support “unwinds” the stack to find the exception handler and
then gives control to the handler. The same thing happens when an exception oc-
curs within a function called within a try block if the function does not have an ap-
propriate exception handler.

For the x86 architecture, Figure 4–1 shows how an exception handler is lo-
cated on the stack when an exception occurs. Once the exception handler block
completes, control passes to the next statement after the exception block unless
there is some other control flow statement in the handler. Note that SEH on some
other architectures uses a more efficient static registration process (out of scope
for this discussion) to achieve a similar result.

Figure 4–1 SEH, Blocks, and Functions

STACK
{ DWORD x1; /* Block 1 */

...
__try { /* Block 2 */
DWORD x2;
...
x2 = f (x1);
...
}

__except () {
/* SEH 2 */
}

}
DWORD f (DWORD y)
{ /* Block f */

DWORD z;
z = y / (y - 1);
return z / y;

}

Windows Exception Handler

Block 1
x1

Block 2
x2

SEH 2

Block f
y
z

Exception Occurs

Execute this SEH

ptg

104 C H A P T E R 4 E X C E P T I O N H A N D L I N G

Filter Expressions and Their Values

The in the clause is evaluated immediately after
the exception occurs. The expression is usually a literal constant, a call to a filter
function, or a conditional expression. In all cases, the expression should return
one of three values.

1. —Windows executes the except block as
shown in Figure 4–1 (also see Program 4–1).

2. —Windows ignores the exception handler
and searches for an exception handler in the enclosing block, continuing until
it finds a handler.

3. —Windows immediately returns control
to the point at which the exception occurred. It is not possible to continue after
some exceptions, and inadvisable in most other cases, and another exception
is generated immediately if the program attempts to do so.

Here is a simple example using an exception handler to delete a temporary file
if an exception occurs in the loop body. Notice you can apply the clause to
any block, including the block associated with a , , or other flow control
statement. In this example, if there is any exception, the exception handler closes
the file handle and deletes the temporary file. The loop iteration continues.

The exception handler executes unconditionally. In many realistic situations,
the exception code is tested first to determine if the exception handler should
execute; the next sections show how to test the exception code.

ptg

E X C E P T I O N S A N D T H E I R H A N D L E R S 105

The logic of this code fragment is as follows.

• Each loop iteration writes data to a temporary file associated with the itera-
tion. An enhancement would append an identifier to the temporary file name.

• If an exception occurs in any loop iteration, all data accumulated in the
temporary file is deleted, and the next iteration, if any, starts to accumulate
data in a new temporary file with a new name. You need to create a new name
so that another process does not get the temporary name after the deletion.

• The example shows just one location where an exception could occur, although
the exception could occur anywhere within the loop body.

• The file handle is assured of being closed when exiting the loop or starting a
new loop iteration.

• If an exception occurs, there is almost certainly a program bug. Program 4–4
shows how to analyze an address exception. Nonetheless, this code fragment
allows the loop to continue, although it might be better to consider this a fatal
error and terminate the program.

Exception Codes

The block or the filter expression can determine the exact exception us-
ing this function:

You must get the exception code immediately after an exception. Therefore,
the filter function itself cannot call (the compiler enforces
this restriction). A common usage is to invoke it in the filter expression, as in the
following example, where the exception code is the argument to a user-supplied
filter function.

ptg

106 C H A P T E R 4 E X C E P T I O N H A N D L I N G

In this situation, the filter function determines and returns the filter
expression value, which must be one of the three values enumerated earlier. The
function can use the exception code to determine the function value; for example,
the filter may decide to pass floating-point exceptions to an outer handler (by
returning) and to handle a memory access
violation in the current handler (by returning).

 can return a large number of possible exception code
values, and the codes are in several categories.

• Program violations such as the following:

– —An attempt to read, write, or execute
a virtual address for which the process does not have access.

– —Many processors insist, for
example, that s be aligned on 4-byte boundaries.

– —The filter expression was
, but it is not possible to continue

after the exception that occurred.

• Exceptions raised by the memory allocation functions— and
—if they use the flag (see

C ha pter 5) . Th e v a lu e w i l l be e i th er o r
.

• A user-defined exception code generated by the function;
see the User-Generated Exceptions subsection.

• A large variety of arithmetic (especially floating-point) codes such as
and .

• Exceptions used by debuggers, such as and
.

 is an alternative function, callable only from
within the filter expression, which returns additional information, some of which
is processor-specific. Program 4–3 uses .

ptg

E X C E P T I O N S A N D T H E I R H A N D L E R S 107

The structure contains both processor-specific and
processor-independent information organized into two other structures, an excep-
tion record and a context record.

 contains a member for the with the
same set of values as returned by . The
member of the is either or ,
which allows the filter function to determine that it should not attempt to
continue execution. Other data members include a virtual memory address,

, and a parameter array, .
In the case of or

, the first element indicates whether the violation was a memory
write (), read (), or execute (). The second element is the virtual memory ad-
dress. The third array element specifies the code that caused the excep-
tion.

The execute error (code 8) is a Data Execution Prevention (DEP) error, which
indicates an attempt to execute data that is not intended to be code, such as data
on the heap. This feature is supported as of XP SP2; see MSDN for more
information.

, the second member, contains
processor-specific information, including the address where the exception
occurred. There are different structures for each type of processor, and the
structure can be found in .

Summary: Exception Handling Sequence

Figure 4–2 shows the sequence of events that takes place when an exception oc-
curs. The code is on the left side, and the circled numbers on the right show the
steps carried out by the language run-time support. The steps are as follows.

1. The exception occurs, in this case a division by zero.

2. Control transfers to the exception handler, where the filter expression is
evaluated. is called first, and its return value is the
argument to the function .

ptg

108 C H A P T E R 4 E X C E P T I O N H A N D L I N G

3. The filter function bases its actions on the exception code value.

4. The exception code is in this case.

5. The filter function determines that the exception handler should be executed,
so the return value is .

6. The exception handler, which is the code associated with the
clause, executes.

7. Control passes out of the try-except block.

Floating-Point Exceptions

Readers not interested in floating-point arithmetic may wish to skip this section.
There are seven distinct floating-point exception codes. These exceptions are

disabled initially and will not occur without first setting the processor-independent
floating-point mask with the function. Alternatively, enable floating-

Figure 4–2 Exception Handling Sequence

__try {
...

i = j / 0;

...
}

__except (Filter (GetExceptionCode ())) {

...
}

...

DWORD Filter (DWORD ExCode)

{
switch (ExCode) {

...

case EXCEPTION_INT_DIVIDE_BY_ZERO:

...

return EXCEPTION_EXECUTE_HANDLER;

case ...

}
}

1

2

6

7

3

4

5

ptg

F L O A T I N G - P O I N T E X C E P T I O N S 109

point exceptions with the compiler flag (you can also specify this from
Visual Studio).

There are specific exceptions for underflow, overflow, division by zero, inexact
results, and so on, as shown in a later code fragment. Turn the mask bit off to en-
able the particular exception.

The new value of the floating-point mask is determined by its current value
() and the two arguments as follows:

The function sets the bits specified by that are enabled by . All bits
not in are unaltered. The floating-point mask also controls processor preci-
sion, rounding, and infinity values, which should not be modified (these topics are
out-of-scope).

The return value is the updated setting. Thus, if both argument values are ,
the value is unchanged, and the return value is the current setting, which
can be used later to restore the mask. On the other hand, if is ,
then the register is set to , so that, for example, an old value can be restored.

Normally, to enable the floating-point exceptions, use the floating-point excep-
tion value, , as shown in the following example. Notice that when a
floating-point exception is processed, the exception must be cleared using the

 function.

ptg

110 C H A P T E R 4 E X C E P T I O N H A N D L I N G

This example enables all possible floating-point exceptions except for the
floating-point stack overflow, . Alternatively,
enable specific exceptions by using only selected exception masks, such as

. Program 4–3 uses similar code in the context of a larger example.

Errors and Exceptions

An error can be thought of as a situation that could occur occasionally and syn-
chronously at known locations. System call errors, for example, should be detected
and reported immediately by logic in the code. Thus, programmers normally in-
clude an explicit test to see, for instance, whether a file read operation has failed.
Chapter 2’s function can diagnose and respond to errors.

An exception, on the other hand, could occur nearly anywhere, and it is not
possible or practical to test for an exception. Division by zero and memory access
violations are examples. Exceptions are asynchronous.

Nonetheless, the distinction is sometimes blurred. Windows will, optionally,
generate exceptions during memory allocation using the and

 functions if memory is insufficient (see Chapter 5). Programs can
also raise their own exceptions with programmer-defined exception codes using
the function, as described next.

Exception handlers provide a convenient mechanism for exiting from inner
blocks or functions under program control without resorting to a , ,
or some other control logic to transfer control; Program 4–2 illustrates this. This
capability is particularly important if the block has accessed resources, such as
open files, memory, or synchronization objects, because the handler can release
them.

User-generated exceptions provide one of the few cases where it is possible or
desirable to continue execution at the exception point rather than terminate the
program, thread, or the block or function. However, use caution when continuing
execution from the exception point.

Finally, a program can restore system state, such as the floating-point mask,
on exiting from a block. Some examples use handlers in this way.

ptg

E R R O R S A N D E X C E P T I O N S 111

User-Generated Exceptions

You can raise an exception at any point during program execution using the
 function. In this way, your program can detect an error and

treat it as an exception.

Parameters

 is the user-defined code. Do not use bit 28, which is reserved
and Windows clears. The error code is encoded in bits 27–0 (that is, all except the
most significant hex digit). Set bit 29 to indicate a “customer” (not Microsoft) ex-
ception. Bits 31–30 encode the severity as follows, where the resulting lead excep-
tion code hex digit is shown with bit 29 set.

• 0—Success (lead exception code hex digit is 2).

• 1—Informational (lead exception code hex digit is 6).

• 2—Warning (lead exception code hex digit is A).

• 3—Error (lead exception code hex digit is E).

 is normally , but setting the value to
 indicates that the filter expression should not generate

; doing so will cause an immediate
 exception.

, if not , points to an array of size
(the third parameter) containing values to be passed to the filter expression. The
values can be interpreted as pointers and are 32 (Win32) or 64 (Win64) bits long,

 (15) is the maximum number of parameters
that can be passed. Use to access this structure.

Note that it is not possible to raise an exception in another process or even an-
other thread in your process. Under very limited circumstances, however, console
control handlers, described at the end of this chapter and in Chapter 6, can raise
exceptions in a different process.

ptg

112 C H A P T E R 4 E X C E P T I O N H A N D L I N G

Example: Treating Errors as Exceptions

Previous examples use to process system call and other errors. The
function terminates the process when the programmer indicates that the error is
fatal. This approach, however, prevents an orderly shutdown, and it also prevents
program continuation after recovering from an error. For example, the program
may have created temporary files that should be deleted, or the program may sim-
ply proceed to do other work after abandoning the failed task. has
other limitations, including the following.

• A fatal error shuts down the entire process when only a single thread
(Chapter 7) should terminate.

• You may wish to continue program execution rather than terminate the
process.

• Synchronization resources (Chapter 8), such as events or semaphores, will not
be released in many circumstances.

Open handles will be closed by a terminating process, but not by a terminating
thread. It is necessary to address this and other deficiencies.

The solution is to write a new function that invokes (Chapter 2)
with a nonfatal code in order to generate the error message. Next, on a fatal error,
it will raise an exception. Windows will use an exception handler from the calling
try block, so the exception may not actually be fatal if the handler allows the pro-
gram to recover and resume. Essentially, augments normal
defensive programming techniques, previously limited to . Once a
problem is detected, the exception handler allows the program to recover and con-
tinue after the error. Program 4–2 illustrates this capability.

Program 4–1 shows the function. It is in the same source module as
, so the definitions and include files are omitted.

Program 4–1 Exception Reporting Function

ptg

T E R M I N A T I O N H A N D L E R S 113

 is used in Program 4–2 and elsewhere.

The UNIX signal model is significantly different from SEH. Signals can be missed
or ignored, and the flow is different. Nonetheless, there are points of comparison.

UNIX signal handling is largely supported through the C library, which is also
available in a limited implementation under Windows. In many cases, Windows
programs can use console control handlers, which are described near the end of
this chapter, in place of signals.

Some signals correspond to Windows exceptions.

Here is the limited signal-to-exception correspondence:

• —

• —

• —Seven distinct floating-point exceptions, such as

• and —User-defined exceptions

The C library function corresponds to .

Windows will not generate , , or , although can
generate one of them. Windows does not support .

The UNIX function (is not in the Standard C library), which can send a
signal to another process, is comparable to the Windows function

 (Chapter 6). In the limited case of , there is no cor-
resp ond ing ex cep t i on , b ut Wind ows has and

, allowing one process (or thread) to “kill” another, although
these functions should be used with care (see Chapters 6 and 7).

Termination Handlers

A termination handler serves much the same purpose as an exception handler,
but it is executed when a thread leaves a block as a result of normal program flow
as well as when an exception occurs. On the other hand, a termination handler
cannot diagnose an exception.

Construct a termination handler using the keyword in a try-
finally statement. The structure is the same as for a try-except statement, but
there is no filter expression. Termination handlers, like exception handlers, are a
convenient way to close handles, release resources, restore masks, and otherwise
restore the process to a known state when leaving a block. For example, a pro-
gram may execute statements in the middle of a block, and the termina-
tion handler can perform the cleanup work. In this way, there is no need to

ptg

114 C H A P T E R 4 E X C E P T I O N H A N D L I N G

include the cleanup code in the code block itself, nor is there a need for or
other control flow statements to reach the cleanup code.

Here is the try-finally form, and Program 4–2 illustrates the usage.

Leaving the Try Block

The termination handler is executed whenever the control flow leaves the try
block for any of the following reasons:

• Reaching the end of the try block and “falling through” to the termination
handler

• Execution of one of the following statements in such a way as to leave the
block:

• An exception

Abnormal Termination

Termination for any reason other than reaching the end of the try block and fall-
ing through or performing a statement is considered an abnormal termi-

1 It may be a matter of taste, either individual or organizational, but many programmers never use the
 statement and try to avoid , except with the statement and sometimes in loops,

and with . Reasonable people continue to differ on this subject. The termination and
exception handlers can perform many of the tasks that you might want to perform with a to a
labeled statement.
2 This statement is specific to the Microsoft C compiler and is an efficient way to leave a try-finally
block without an abnormal termination.

ptg

T E R M I N A T I O N H A N D L E R S 115

nation. The effect of is to transfer to the end of the block and fall
through. Within the termination handler, use this function to determine how the
try block terminated.

The return value will be for an abnormal termination or for a
normal termination.

Note: The termination would be abnormal even if, for example, a
statement were the last statement in the try block.

Executing and Leaving the Termination Handler

The termination handler, or block, is executed in the context of the
block or function that it monitors. Control can pass from the end of the termina-
tion handler to the next statement. Alternatively, the termination handler can
execute a flow control statement (, , , , , or

). Leaving the handler because of an exception is another possibility.

Combining Finally and Except Blocks

A single try block must have a single finally or except block; it cannot have both,
even though it might be convenient. Therefore, the following code would cause a
compile error.

It is possible, however, to embed one block within another, a technique that is
frequently useful. The following code is valid and ensures that the temporary file
is deleted if the loop exits under program control or because of an exception. This

ptg

116 C H A P T E R 4 E X C E P T I O N H A N D L I N G

technique is also useful to ensure that file locks are released. There is also an in-
ner try-except block with some floating-point processing.

Global and Local Unwinds

Exceptions and abnormal terminations will cause a global stack unwind to search
for a handler, as in Figure 4–1. For example, suppose an exception occurs in the
monitored block of the example at the end of the preceding section before the
floating-point exceptions are enabled. The termination handler will be executed
first, followed by the exception handler at the end. There might be numerous ter-
mination handlers on the stack before the exception handler is located.

Recall that the stack structure is dynamic, as shown in Figure 4–1, and that it
contains, among other things, the exception and termination handlers. The con-
tents at any time depend on:

• The static structure of the program’s blocks

• The dynamic structure of the program as reflected in the sequence of open
function calls

ptg

E X A M P L E : U S I N G T E R M I N A T I O N H A N D L E R S T O I M P R O V E P R O G R A M Q U A L I T Y 117

Termination Handlers: Process and Thread Termination

Termination handlers do not execute if a process or thread terminates, whether
the process or thread terminates itself by using or , or
whether the termination is external, caused by a call to or

 from elsewhere. Therefore, a process or thread should not
execute one of these functions inside a try-except or try-finally block.

Notice also that the C library function or a return from a function
will exit the process.

SEH and C++ Exception Handling

C++ exception handling uses the keywords and and is implemented
using SEH. Nonetheless, C++ exception handling and SEH are distinct. They should
be mixed with care, or not at all, because the user-written and C++-generated
exception handlers may interfere with expected operation. For example, an

 handler may be on the stack and catch a C++ exception so that the C++
handler will never receive the exception. The converse is also possible, with a C++
handler catching, for example, an SEH exception generated with .
The Microsoft documentation recommends that Windows exception handlers not be
used in C++ programs at all but instead that C++ exception handling be used
exclusively.

Normally, a Windows exception or termination handler will not call
destructors to destroy C++ object instances. However, the compiler flag (set-
able from Visual Studio) allows C++ exception handling to include asynchronous
exceptions and “unwind” (destroy) C++ objects.

Example: Using Termination Handlers to
Improve Program Quality

Termination and exception handlers allow you to make your program more robust
by both simplifying recovery from errors and exceptions and helping to ensure
that resources and file locks are freed at critical junctures.

Program 4–2, , illustrates these points, using ideas from the preceding
code fragments. processes multiple files, as specified on the command line,
rewriting them so that all letters are in uppercase. Converted files are named by
prefixing to the original file name, and the program “specification” states that
an existing file should not be overridden. File conversion is performed in memory, so
there is a large buffer (sufficient for the entire file) allocated for each file. There are
multiple possible failure points for each processed file, but the program must defend
against all such errors and then recover and attempt to process all the remaining

ptg

118 C H A P T E R 4 E X C E P T I O N H A N D L I N G

files named on the command line. Program 4–2 achieves this without resorting to
the elaborate control flow methods that would be necessary without SEH.

Note that this program depends on file sizes, so it will not work on objects for
which fails, such as a named pipe (Chapter 11). Furthermore, it
fails for large text files longer than 4GB.

The code in the Examples file has more extensive comments.

Program 4–2 File Processing with Error and Exception Recovery

ptg

E X A M P L E : U S I N G T E R M I N A T I O N H A N D L E R S T O I M P R O V E P R O G R A M Q U A L I T Y 119

Run 4–2 shows operation. Originally, there are two text files,
and . The program (Program 2–2) displays the contents of these two
files; you could also use the Windows command. converts these two
files, continuing after failing to find . Finally, cat displays the two converted
files, and .

ptg

120 C H A P T E R 4 E X C E P T I O N H A N D L I N G

Example: Using a Filter Function

Program 4–3 is a skeleton program that illustrates exception and termination
handling with a filter function. This example prompts the user to specify the
exception type and then proceeds to generate an exception. The filter function dis-
poses of the different exception types in various ways; the selections here are arbi-
trary and intended simply to illustrate the possibilities. In particular, the
program diagnoses memory access violations, giving the virtual address of the
reference.

Run 4–2 Converting Text Files to Uppercase

ptg

E X A M P L E : U S I N G A F I L T E R F U N C T I O N 121

The block restores the state of the floating-point mask. Restoring
state, as done here, is not important when the process is about to terminate, but it
is important later when a thread is terminated. In general, a process should still
restore system resources by, for example, deleting temporary files and releasing
synchronization resources (Chapter 8) and file locks (Chapters 3 and 6). Program
4–4 shows the filter function.

This example does not illustrate memory allocation exceptions; they will be
used starting in Chapter 5.

Run 4–4, after the filter function (Program 4–4) shows the program operation.

Program 4–3 Processing Exceptions and Termination

ptg

122 C H A P T E R 4 E X C E P T I O N H A N D L I N G

Program 4–4 shows the filter function used in Program 4–3. This function
simply checks and categorizes the various possible exception code values. The
code in the Examples file checks every possible value; here the function tests only
for a few that are relevant to the test program.

ptg

E X A M P L E : U S I N G A F I L T E R F U N C T I O N 123

Program 4–4 Exception Filtering

ptg

124 C H A P T E R 4 E X C E P T I O N H A N D L I N G

Console Control Handlers

Exception handlers can respond to a variety of asynchronous events, but they do
not detect situations such as the user logging off or entering a from the
keyboard to stop a program. Use console control handlers to detect such events.

The function allows one or more specified func-
tions to be executed on receipt of a , , or one of three other
console-related signals. The function, described in

Run 4–4 Exception Filtering

ptg

C O N S O L E C O N T R O L H A N D L E R S 125

Chapter 6, also generates these signals, and the signals can be sent to other pro-
cesses that are sharing the same console. The handlers are user-specified Boolean
functions that take a argument identifying the signal.

Multiple handlers can be associated with a signal, and handlers can be
removed as well as added. Here is the function to add or delete a handler.

The handler routine is added if the flag is ; otherwise, it is deleted
from the list of console control routines. Notice that the signal is not specified. The
handler must test to see which signal was received.

The handler routine returns a Boolean value and takes a single param-
eter that identifies the signal. The in the definition is a place-
holder; the programmer specifies the name.

Here are some other considerations when using console control handlers.

• If the parameter is and is , signals
will be ignored.

• The flag on (Chapter 2) will
cause to be treated as keyboard input rather than as a signal.

• The handler routine actually executes as an independent thread (see
Chapter 7) within the process. The normal program will continue to operate,
as shown in the next example.

• Raising an exception in the handler will not cause an exception in the thread
that was interrupted because exceptions apply to threads, not to an entire pro-
cess. If you wish to communicate with the interrupted thread, use a variable,
as in the next example, or a synchronization method (Chapter 8).

There is one other important distinction between exceptions and signals. A
signal applies to the entire process, whereas an exception applies only to the
thread executing the code where the exception occurs.

ptg

126 C H A P T E R 4 E X C E P T I O N H A N D L I N G

 identifies the signal (or event) and can take on one of the follow-
ing five values.

1. indicates that the sequence was entered from the
keyboard.

2. indicates that the console window is being closed.

3. indicates the signal.

4. indicates that the user is logging off.

5. indicates that Windows is shutting down.

The signal handler can perform cleanup operations just as an exception or ter-
mination handler would. The signal handler can return to indicate that the
function handled the signal. If the signal handler returns , the next handler
function in the list is executed. The signal handlers are executed in the reverse or-
der from the way they were set, so that the most recently set handler is executed
first and the system handler is executed last.

Example: A Console Control Handler

Program 4–5 loops forever, calling the self-explanatory function every 5
seconds. The user can terminate the program with a or by closing the
console. The handler routine will put out a message, wait 10 seconds, and, it
would appear, return , terminating the program. The main program, how-
ever, detects the flag and stops the process. This illustrates the concur-
rent operation of the handler routine; note that the timing of the signal
determines the extent of the signal handler’s output. Examples in later chapters
also use console control handlers.

Note the use of ; this macro is for user functions passed as arguments
to Windows functions to assure the proper calling conventions. It is defined in the
Platform SDK header file .

Program 4–5 Signal Handling Program

ptg

E X A M P L E : A C O N S O L E C O N T R O L H A N D L E R 127

There’s very little to show with this program, as we can’t show the sound ef-
fects. Nonetheless, Run 4–5 shows the command window where I typed Ctrl-C af-
ter about 11 seconds.

ptg

128 C H A P T E R 4 E X C E P T I O N H A N D L I N G

Vectored Exception Handling

Exception handling functions can be directly associated with exceptions, just as
console control handlers can be associated with console control events. When an
exception occurs, the vectored exception handlers are called first, before the sys-
tem unwinds the stack to look for structured exception handlers. No keywords,
such as and , are required.

Vectored exception handling (VEH) management is similar to console control
handler management, although the details are different. Add, or “register,” a
handler using .

Handlers can be chained, so the parameter specifies that the
handler should either be the first one called when the exception occurs (nonzero
value) or the last one called (zero value). Subsequent

 calls can update the order. For example, if two handlers are added, both
with a zero value, the handlers will be called in the order in which
they were added.

The return value is a handler to the exception handler (indicates fail-
ure). This handle is the sole parameter to ,
which returns a non- value if it succeeds.

The successful return value is a pointer to the exception handler, that is,
. A return value indicates failure.

 is a pointer to the handler function of the form:

Run 4–5 Interrupting Program Execution from the Console

ptg

S U M M A R Y 129

 is the address of an struc-
ture with processor-specific and general information. This is the same structure
returned by and used in Program 4–4.

A VEH handler function should be fast so that the exception handler will be
reached quickly. In particular, the handler should never access a synchronization
object that might block the thread, such as a mutex (see Chapter 8). In most cases,
the VEH simply accesses the exception structure, performs some minimal
processing (such as setting a flag), and returns. There are two possible return
values, both of which are familiar from the SEH discussion.

1. No more handlers are executed, SEH is
not performed, and control is returned to the point where the exception
occurred. As with SEH, this may not always be possible or advisable.

2. The next VEH handler, if any, is executed.
If there are no additional handlers, the stack is unwound to search for SEH
handlers.

Exercise 4–9 asks you to add VEH to Programs 4–3 and 4–4.

Summary

Windows SEH provides a robust mechanism for C programs to respond to and
recover from exceptions and errors. Exception handling is efficient and can result
in more understandable, maintainable, and safer code, making it an essential aid
to defensive programming and higher-quality programs. Similar concepts are
implemented in most languages and OSs, although the Windows solution allows
you to analyze the exact cause of an exception.

Console control handlers can respond to external events that do not generate
exceptions. VEH is a newer feature that allows functions to be executed before
SEH processing occurs. VEH is similar to conventional interrupt handling.

ptg

130 C H A P T E R 4 E X C E P T I O N H A N D L I N G

Looking Ahead

 and exception and termination handlers are used as conve-
nient in subsequent examples. Chapter 5 covers memory management, and in the
process, SEH is used to detect memory allocation errors.

Exercises

4–1. Extend Program 4–2 so that every call to contains
sufficient information so that the exception handler can report precisely
what error occurred and also the output file. Further enhance the program
so that it can work with and pipes (Chapter 11).

4–2. Extend Program 4–3 by generating memory access violations, such as array
index out of bounds and arithmetic faults and other types of floating-point
exceptions not illustrated in Program 4–3.

4–3. Augment Program 4–3 so as to print the value of the floating-point mask af-
ter enabling the exceptions. Are all the exceptions actually enabled? Ex-
plain the results.

4–4. What values do you get after a floating-point exception, such as division by
zero? Can you set the result in the filter function as Program 4–3 attempts
to do?

4–5. What happens in Program 4–3 if you do not clear the floating-point excep-
tion? Explain the results. Hint: Request an additional exception after the
floating-point exception.

4–6. Extend Program 4–5 so that the handler routine raises an exception rather
than returning. Explain the results.

4–7. Extend Program 4–5 so that it can handle shutdown and log-off signals.

4–8. Confirm through experiment that Program 4–5’s handler routine executes
concurrently with the main program.

4–9. Enhance Programs 4–3 and 4–4. Specifically, handle floating-point and
arithmetic exceptions before invoking SEH.

ptg

131

C H A P T E R

5 Memory
Management,
Memory-
Mapped Files,
and DLLs

Most programs require some form of dynamic memory management. This need
arises whenever there is a need to create data structures whose size or number is
not known at program build time. Search trees, symbol tables, and linked lists are
common examples of dynamic data structures where the program creates new in-
stances at run time.

Windows provides flexible mechanisms for managing a program’s dynamic
memory. Windows also provides memory-mapped files to associate a process’s
address space directly with a file, allowing the OS to manage all data movement
between the file and memory so that the programmer never needs to deal with

, , , or the other file I/O functions. With
memory-mapped files, the program can maintain dynamic data structures
conveniently in permanent files, and memory-based algorithms can process file
data. What is more, memory mapping can significantly speed up file processing,
and it provides a mechanism for memory sharing between processes.

Dynamic link libraries (DLLs) are an essential special case of file mapping
and shared memory in which files (primarily read-only code files) are mapped into
the process address space for execution.

This chapter describes the Windows memory management and file mapping
functions, illustrates their use and performance advantages with several
examples, and describes both implicitly and explicitly linked DLLs.

ptg

132 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Windows Memory Management Architecture

Win32 (the distinction between Win32 and Win64 is important here) is an API for
the Windows 32-bit OS family. The “32-bitness” manifests itself in memory
addresses, and pointers (, , and so on) are 4-byte (32-bit) objects.
The Win64 API provides a much larger virtual address space with 8-byte, 64-bit
pointers and is a natural evolution of Win32. Nonetheless, use care to ensure that
your applications can be targeted at both platforms; the examples have all been
tested on both 64-bit and 32-bit systems, and 32-bit and 64-bit executables are
available in the Examples file. With the example programs, there are comments
about changes that were required to support Win64.

Every Windows process, then, has its own private virtual address space of
either 4GB (232 bytes) or 16EB (16 exabytes or 264 bytes1). Win32 makes at least
half of this (2–3GB; 3GB must be enabled at boot time) available to a process. The
remainder of the virtual address space is allocated to shared data and code,
system code, drivers, and so on.

The details of these memory allocations, although interesting, are not
important here. From the programmer’s perspective, the OS provides a large
address space for code, data, and other resources. This chapter concentrates on
exploiting Windows memory management without being concerned with OS
implementation. Nonetheless, a very short overview follows.

Memory Management Overview

The OS manages all the details of mapping virtual to physical memory and the
mechanics of page swapping, demand paging, and the like. This subject is
discussed thoroughly in OS texts. Here’s a brief summary.

• The computer has a relatively small amount of physical memory; 1GB is the
practical minimum for 32-bit Windows XP, and much larger physical
memories are typical.2

• Every process—and there may be several user and system processes—has its
own virtual address space, which may be much larger than the physical mem-
ory available. For example, the virtual address space of a 4GB process is two

1 Current systems cannot provide the full 264-byte virtual address space. 244 bytes (16 terabytes) is a
common processor limit at this time. This limit is certain to increase over time.
2 Memory prices continue to decline, and “typical” memory sizes keep increasing, so it is difficult to
define typical memory size. At the time of publication, even the most inexpensive systems contain
2GB, which is sufficient for Windows XP, Vista, and 7. Windows Server systems generally contain
much more memory.

ptg

W I N D O W S M E M O R Y M A N A G E M E N T A R C H I T E C T U R E 133

times larger than 2GB of physical memory, and there may be many such pro-
cesses running concurrently.

• The OS maps virtual addresses to physical addresses.

• Most virtual pages will not be in physical memory, so the OS responds to page
faults (references to pages not in memory) and loads the data from disk, either
from the system swap file or from a normal file. Page faults, while transparent
to the programmer, have a significant impact on performance, and programs
should be designed to minimize faults. Again, many OS texts treat this impor-
tant subject, which is beyond the scope of this book.

Figure 5–1 shows the Windows memory management API layered on the Vir-
tual Memory Manager. The Virtual Memory Windows API (,

, , , and so on) deals with whole
pages. The Windows Heap API manages memory in user-defined units.

Figure 5–1 Windows Memory Management Architecture

Physical

Memory

Windows Program

Heap API: HeapCreate,
HeapDestroy,
HeapAlloc, HeapFree MMF API:

CreateFileMapping,
CreateViewOfFile

Virtual Memory API

Windows Kernel with

Virtual Memory Manager

C library: malloc, free

Disk
& File
System

ptg

134 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

The layout of the virtual memory address space is not shown because it is not
directly relevant to the API, and the layout could change in the future. The Mi-
crosoft documentation provides this information.

Nonetheless, many programmers want to know more about their environ-
ment. To start to explore the memory structure, invoke the following.

The parameter is the address of a structure containing infor-
mation on the system’s page size, allocation granularity, and the application’s
physical memory address. You can run the program in the Examples file
to see the results on your computer, and an exercise (with a screenshot) suggests
an enhancement.

Heaps

Windows maintains pools of memory in heaps. A process can contain several
heaps, and you allocate memory from these heaps.

One heap is often sufficient, but there are good reasons, explained below, for
multiple heaps. If a single heap is sufficient, just use the C library memory
management functions (, , ,).

Heaps are Windows objects; therefore, they have handles. However, heaps are
not kernel objects. The heap handle is necessary when you’re allocating memory.
Each process has its own default heap, and the next function obtains its handle.

Notice that is the return value to indicate failure rather than
, which is returned by .

A program can also create distinct heaps. It is convenient at times to have sep-
arate heaps for allocation of separate data structures. The benefits of separate
heaps include the following.

Return: The handle for the process’s heap; on failure.

ptg

H E A P S 135

• Fairness. If threads allocate memory solely from a unique heap assigned to the
thread, then no single thread can obtain more memory than is allocated to its
heap. In particular, a memory leak defect, caused by a program neglecting to free
data elements that are no longer needed, will affect only one thread of a process.3

• Multithreaded performance. By giving each thread its own heap,
contention between threads is reduced, which can substantially improve
performance. See Chapter 9.

• Allocation efficiency. Allocation of fixed-size data elements within a small heap
can be more efficient than allocating elements of many different sizes in a single
large heap. Fragmentation is also reduced. Furthermore, giving each thread a
unique heap for storage used only within the thread simplifies synchronization,
resulting in additional efficiencies.

• Deallocation efficiency. An entire heap and all the data structures it
contains can be freed with a single function call. This call will also free any
leaked memory allocations in the heap.

• Locality of reference efficiency. Maintaining a data structure in a small
heap ensures that the elements will be confined to a relatively small number
of pages, potentially reducing page faults as the data structure elements are
processed.

The value of these advantages varies depending on the application, and many
programmers use only the process heap and the C library. Such a choice, however,
prevents the program from exploiting the exception generating capability of the
Windows memory management functions (described along with the functions). In
any case, the next two functions create and destroy heaps.4

Creating a Heap

Use to create a new heap, specifying the initial heap size.
The initial heap size, which can be zero and is always rounded up to a multiple

of the page size, determines how much physical storage (in a paging file) is
committed to the heap (that is, the required space is allocated from the heap)
initially, rather than on demand as memory is allocated from the heap. As a
program exceeds the initial size, additional pages are committed automatically up
to the maximum size. Because the paging file is a limited resource, deferring
commitment is a good practice unless it is known ahead of time how large the

3 Chapter 7 introduces threads.
4 In general, create objects of type with the system call. is an exception to this
pattern.

ptg

136 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

heap will become. , if nonzero, determines the heap’s maximum
size as it expands dynamically. The process heap will also grow dynamically.

The two size fields are of type rather than . is defined
to be either a 32-bit or 64-bit unsigned integer, depending on compiler flags
(and). helps to enable source code portability to both
Win32 and Win64. variables can span the entire range of a 32- or 64-bit
pointers. is the signed version but is not used here.

 is a combination of three flags.

• —With this option, failed allocations generate
an exception for SEH processing (see Chapter 4). itself will not
cause an exception; rather, functions such as , which are explained
shortly, cause an exception on failure if this flag is set. There is more discus-
sion after the memory management function descriptions.

• —Set this flag under certain circumstances to get a
small performance improvement; there is additional discussion after the
memory management function descriptions.

• —This is an out-of-scope advanced feature
that allows you to specify that code can be executed from this heap. Normally,
if the system has been configured to enforce data execution prevention (DEP),
any attempt to execute code in the heap will generate an exception with code

, partially providing security from code that at-
tempts to exploit buffer overruns.

There are several other important points regarding .

• If is nonzero, the virtual address space is allocated accord-
ingly, even though it may not be committed in its entirety. This is the
maximum size of the heap, which is said to be nongrowable. This option limits
a heap’s size, perhaps to gain the fairness advantage cited previously.

Return: A heap handle, or on failure.

ptg

M A N A G I N G H E A P M E M O R Y 137

• If, on the other hand, is , then the heap is growable beyond
the initial size. The limit is determined by the available virtual address space
not currently allocated to other heaps and swap file space.

Note that heaps do not have security attributes because they are not kernel
objects; they are memory blocks managed by the heap functions. File mapping ob-
jects, described later in the chapter, can be secured (Chapter 15).

To destroy an entire heap, use . is not appropri-
ate because heaps are not kernel objects.

 should specify a heap generated by . Be careful not to
destroy the process’s heap (the one obtained from). Destroying a
heap frees the virtual memory space and physical storage in the paging file.
Naturally, well-designed programs should destroy heaps that are no longer needed.

Destroying a heap is also a quick way to free data structures without travers-
ing them to delete one element at a time, although C++ object instances will not
be destroyed inasmuch as their destructors are not called. Heap destruction has
three benefits.

1. There is no need to write the data structure traversal code.

2. There is no need to deallocate each individual element.

3. The system does not spend time maintaining the heap since all data structure
elements are deallocated with a single call.

The C library uses only a single heap. There is, therefore, nothing similar to
Windows heap handles.

The UNIX function can increase a process’s address space, but it is not a
general-purpose memory manager.

UNIX does not generate signals when memory allocation fails; the programmer
must explicitly test the returned pointer.

Managing Heap Memory

The heap management functions allocate and free memory blocks.

ptg

138 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

HeapAlloc

Obtain memory blocks from a heap by specifying the heap’s handle, the block size,
and several flags.

Parameters

 is the heap handle for the heap in which the memory block is to be allo-
cated. This handle should come from either or .

 is a combination of three flags:

• and —These flags have the
same meaning as for . The first flag is ignored if it was set with the
heap’s function and enables exceptions for the specific
call, even if was not specified by .
The second flag should not be used when allocating within the process heap, and
there is more information at the end of this section.

• —This flag specifies that the allocated memory will be
initialized to ; otherwise, the memory contents are not specified.

 is the size of the block of memory to allocate. For nongrowable
heaps, this is limited to (approximately 0.5MB). This block size limit ap-
plies even to Win64 and to very large heaps.

The return value from a successful call is an pointer,
which is either 32 or 64 bits, depending on the build option.

Note: Once returns a pointer, use the pointer in the normal way;
there is no need to make reference to its heap.

Heap Management Failure

The has a different failure behavior than other functions we’ve used.

Return: A pointer to the allocated memory block, or on
failure (unless exception generation is specified).

ptg

M A N A G I N G H E A P M E M O R Y 139

• Function failure causes an exception when using .
The exception code is either or

.

• Without , returns a pointer.

• In either case, you cannot use for error information, and
hence you cannot use this book’s function to produce a text er-
ror message.

HeapFree

Deallocating memory from a heap is simple.

 should be or (see the end of the section).
 should be a value returned by or (described

next), and, of course, should be the heap from which was allocated.
A return value indicates a failure, and you can use ,

which does not work with . does not ap-
ply to .

HeapReAlloc

Memory blocks can be reallocated to change their size. Allocation failure behavior
is the same as with .

Return: A pointer to the reallocated block. Failure returns or
causes an exception.

ptg

140 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Parameters

The first parameter, , is the same heap used with the call that
returned the value (the third parameter). specifies some essential
control options.

• and —These flags are
the same as for .

• —Only newly allocated memory (when is larger
than the original block) is initialized. The original block contents are not
modified.

• —This flag specifies that the block cannot
be moved. When you’re increasing a block’s size, the new memory must be
allocated at the address immediately after the existing block.

 specifies the existing block in to be reallocated.
 is the new block size, which can be larger or smaller than the

existing size, but, as with , it must be less than .
It is possible that the returned pointer is the same as . If, on the other

hand, a block is moved (permit this by omitting the
 flag), the returned value might be different. Be careful to update any refer-

ences to the block. The data in the block is unchanged, regardless of whether or
not it is moved; however, some data will be lost if the block size is reduced.

HeapSize

Determine the size of an allocated block by calling with the heap han-
dle and block pointer. This function could have been named
because it does not obtain the heap size. The value will be greater than or equal to
the size used with or .

The only possible value is .

Return: The size of the block, or zero on failure.

ptg

M A N A G I N G H E A P M E M O R Y 141

The error return value is . You cannot use to find
extended error information.

More about the Serialization and Exceptions Flags

The heap management functions use two unique flags, and
 that need additional explanation.

The Flag

The functions , , and can specify the
 flag. There can be a small performance gain with this flag

because the functions do not provide mutual exclusion to threads accessing the
heap. Some simple tests that do nothing except allocate memory blocks measured
a performance improvement of about 16 percent. This flag is safe in a few
situations, such as the following.

• The program does not use threads (Chapter 7), or, more accurately, the process
(Chapter 6) has only a single thread. All examples in this chapter use the flag.

• Each thread has its own heap or set of heaps, and no other thread accesses
those heaps.

• The program has its own mutual exclusion mechanism (Chapter 8) to prevent
concurrent access to a heap by several threads using and

.

The Flag

Forcing exceptions when memory allocation fails avoids the need for error tests af-
ter each allocation. Furthermore, the exception or termination handler can clean up
memory that did get allocated. This technique is used in some examples.

Two exception codes are possible.

1. indicates that the system could not create a block of the
requested size. Causes can include fragmented memory, a nongrowable heap that
has reached its limit, or even exhaustion of all memory with growable heaps.

2. indicates that the specified heap has been
corrupted. For example, a program may have written memory beyond the
bounds of an allocated block.

ptg

142 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Setting Heap Information

 allows you to enable the “low-fragmentation” heap (LFH)
on NT5 (Windows XP and Server 2003) computers; the LFH is the default on NT6.
This is a simple function; see MSDN for an example. The LFH can help program
performance when allocating and deallocating small memory blocks with different
sizes.

 also allows you to enable the “terminate on corrup-
tion” feature. Windows terminates the process if it detects an error in the heap;
such an error could occur, for example, if you wrote past the bounds of an array al-
located on the heap.

Use to determine if the LFH is enabled for the
heap. You can also determine if the heap supports look-aside lists (see MSDN).

Other Heap Functions

, despite the name, does not compact the heap. However, it does re-
turn the size of the largest committed free block in the heap. at-
tempts to detect heap corruption. enumerates the blocks in a heap, and

 obtains all the heap handles that are valid in a process.
 and allow a thread to serialize heap access, as

described in Chapter 8.
Some functions, such as and , were used for compat-

ibility with 16-bit systems and for functions inherited from 16-bit Windows. These
functions are mentioned first as a reminder that some functions continue to be sup-
ported even though they are not always relevant and you should use the heap func-
tions. However, there are cases where MSDN states that you need to use these
functions, and memory must be freed with the function corresponding to its alloca-
tor. For instance, use with (see Program 2–1,

). In general, if a function allocates memory, read MSDN to deter-
mine the correct free function, although is the only such function
used in this book.

Summary: Heap Management

The normal process for using heaps is straightforward.

1. Get a heap handle with either or .

2. Allocate blocks within the heap using .

3. Optionally, free some or all of the individual blocks with .

ptg

E X A M P L E : S O R T I N G F I L E S W I T H A B I N A R Y S E A R C H T R E E 143

4. Destroy the heap and close the handle with .

5. The C run-time library (, , etc.) are frequently adequate.
However, memory allocated with the C library must be freed with the C
library. You cannot assume that the C library uses the process heap.

Figure 5–2 and Program 5–1 illustrate this process.

Normally, programmers use the C library memory management
functions and can continue to do so if separate heaps or exception generation are
not needed. is then logically equivalent to using the process
heap, to , and to . allocates and
initializes objects, and can easily emulate this behavior. There is no C
library equivalent to .

Example: Sorting Files with a Binary Search Tree

A search tree is a common dynamic data structure requiring memory manage-
ment. Search trees are a convenient way to maintain collections of records, and
they have the additional advantage of allowing efficient sequential traversal.

Program 5–1 implements a sort (, a limited version of the UNIX
command) by creating a binary search tree using two heaps. The keys go into the
node heap, which represents the search tree. Each node contains left and right
pointers, a key, and a pointer to the data record in the data heap. The complete
record, a line of text from the input file, goes into the data heap. Notice that the
node heap consists of fixed-size blocks, whereas the data heap contains strings
with different lengths. Finally, tree traversal displays the sorted file.

This example arbitrarily uses the first 8 bytes of a string as the key rather than
using the complete string. Two other sort implementations in this chapter (Pro-
grams 5–4 and 5–5) sort files.

Figure 5–2 shows the sequence of operations for creating heaps and allocating
blocks. The program code on the right is pseudocode in that only the essential func-
tion calls and arguments are shown. The virtual address space on the left shows the
three heaps along with some allocated blocks in each. The figure differs slightly
from the program in that the root of the tree is allocated in the process heap in the
figure but not in Program 5–1. Finally, the figure is not drawn to scale.

Note: The actual locations of the heaps and the blocks within the heaps
depend on the Windows implementation and on the process’s history of previous
memory use, including heap expansion beyond the original size. Furthermore, a
growable heap may not occupy contiguous address space after it grows beyond the
originally committed size. The best programming practice is to make no
assumptions; just use the memory management functions as specified.

ptg

144 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Program 5–1 illustrates some techniques that simplify the program and would
not be possible with the C library alone or with the process heap.

• The node elements are fixed size and go in a heap of their own, whereas the
varying-length data element records are in a separate heap.

• The program prepares to sort the next file by destroying the two heaps rather
than freeing individual elements.

• Allocation errors are processed as exceptions so that it is not necessary to test
for pointers.

An implementation such as Program 5–1 is limited to smaller files when using
Windows because the complete file and a copy of the keys must reside in virtual
memory. The absolute upper limit of the file length is determined by the available
virtual address space (3GB at most for Win32; the practical limit is less). With
Win64, you will probably not hit a practical limit.

Figure 5–2 Memory Management in Multiple Heaps

ProcHeap

RecHeap

NodeHeap

Virtual Address Space Program

ProcHeap = GetProcessHeap ();
pRoot = HeapAlloc (ProcHeap);

RecHeap = HeapCreate ();
NodeHeap = HeapCreate ();

while () {
pRec = HeapAlloc (RecHeap);
pNode = HeapAlloc (NodeHeap);

· · ·
}

HeapDestroy (RecHeap)
HeapDestroy (NodeHeap)

· · ·

· · ·

· · ·
Record

Record

Record

Node

Node

Node

Not allocated

Not allocated

Not allocated

Not allocated

ptg

E X A M P L E : S O R T I N G F I L E S W I T H A B I N A R Y S E A R C H T R E E 145

Program 5–1 calls several tree management functions: ,
, , and . They are shown in Program 5–2. See Run 5–2, af-

ter Program 5–2, for a run example.
This program uses heap exceptions and user-generated exceptions for file open er-

rors. An alternative would be to use , eliminate use of the
 flag, and test directly for memory allocation errors.

Program 5–1 Sorting with a Binary Search Tree

ptg

146 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Program 5–2 shows the functions that actually implement the search tree
algorithms. , the first function, allocates memory in the two heaps.

, the second function, is used in several other programs in this chapter. No-
tice that these functions are called by Program 5–1 and use the completion and
exception handlers in that program. Thus, a memory allocation error would be han-
dled by the main program, and the program would continue to process the next file.

ptg

E X A M P L E : S O R T I N G F I L E S W I T H A B I N A R Y S E A R C H T R E E 147

Program 5–2 : Tree Management Functions

ptg

148 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Run 5–2 shows sorting small and large text files that were generated
with . , introduced in Chapter 1, places 8 random digits in the
first 8 bytes of each record to form a sort key. The “x” at the right end of each line
is a visual cue and has no other meaning.

Run 5–2 Sorting Small and Large Text Files

ptg

M E M O R Y - M A P P E D F I L E S 149

The utility shows the execution time; see Chapter 6 for the im-
plementation.

Note: This search tree implementation is clearly not efficient because the tree
may become unbalanced. Implementing a balanced search tree would be worth-
while but would not change the program’s memory management.

Memory-Mapped Files

Dynamic memory in heaps must be physically allocated in a paging file. The OS’s
memory management controls page movement between physical memory and the
paging file and also maps the process’s virtual address space to the paging file.
When the process terminates, the physical space in the file is deallocated.

Windows memory-mapped file functionality can also map virtual memory
space directly to normal files. This has several advantages.

• There is no need to perform direct file I/O (reads and writes).

• The data structures created in memory will be saved in the file for later use by
the same or other programs. Be careful about pointer usage, as Program 5–5
illustrates.

• Convenient and efficient in-memory algorithms (sorts, search trees, string
processing, and so on) can process file data even though the file may be much
larger than available physical memory. The performance will still be
influenced by paging behavior if the file is large.

• File processing performance is frequently much faster than using the
 and file access functions.

• There is no need to manage buffers and the file data they contain. The OS
does this hard work and does it efficiently with a high degree of reliability.

• Multiple processes (Chapter 6) can share memory by mapping their virtual
address spaces to the same file or to the paging file (interprocess memory
sharing is the principal reason for mapping to the paging file).

• There is no need to consume paging file space.

The OS itself uses memory mapping to implement DLLs and to load and
execute executable () files. DLLs are described at the end of this chapter.

Caution: When reading or writing a mapped file, it’s a good idea to use SEH to
catch any exceptions. The Examples file programs
all do this, but the SEH is omitted from the program listings for brevity.

ptg

150 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

File Mapping Objects

The first step is to create a Windows kernel file mapping object, which has a han-
dle, on an open file and then map all or part of the file to the process’s address
space. File mapping objects can be given names so that they are accessible to other
processes for shared memory. Also, the mapping object has protection and security
attributes and a size.

Parameters

 is the handle of an open file with protection flags compatible with .
The value refers to the paging file, and you can use this
value for interprocess memory sharing without creating a separate file.

 allows the mapping object to be secured.
 specifies the mapped file access with the following flags.

Additional flags are allowed for specialized purposes. For example, the
 flag specifies an executable image; see the MSDN documentation for more

information.

• means that the program can only read the pages in the
mapped region; it can neither write nor execute them. must have

 access.

• gives full access to the object if has both
 and access.

• means that when mapped memory is changed, a private (to
the process) copy is written to the paging file and not to the original file. A
debugger might use this flag when setting breakpoints in shared code.

Return: A file mapping handle, or on failure.

ptg

M E M O R Y - M A P P E D F I L E S 151

 and specify the size of the
mapping object. If they are both , the current file size is used; be sure to specify
these two size values when using the paging file.

• If the file is expected to grow, use a size equal to the expected file size, and, if
necessary, the file size will be set to that size immediately.

• Do not map to a file region beyond this specified size; the mapping object can-
not grow.

• An attempt to create a mapping on a zero-length file will fail.

• Unfortunately, you need to specify the mapping size with two 32-bit integers.
There is no way to use a single 64-bit integer.

 names the mapping object, allowing other processes to share the
object; the name is case-sensitive. Use if you are not sharing memory.

An error is indicated by a return value of (not).

Opening an Existing File Mapping

You can obtain a file mapping handle for an existing, named mapping by specify-
ing the existing mapping object’s name. The name comes from a previous call to

. Two processes can share memory by sharing a file map-
ping. The first process creates the named mapping, and subsequent processes
open this mapping with the name. The open will fail if the named object does not
exist.

 is checked against the access to the named object created
with ; see the upcoming description for the
possible values. is the name created by a call.
Handle inheritance () is a subject for Chapter 6.

The function, as expected, destroys mapping handles.

Return: A file mapping handle, or on failure.

ptg

152 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Mapping Objects to Process Address Space

The next step is to map a file into the process’s virtual address space. From the
programmer’s perspective, this allocation is similar to , although it is
much coarser, with larger allocation units. A pointer to the allocated block (or file
view) is returned; the difference lies in the fact that the allocated block is backed
by a user-specified file rather than the paging file. The file mapping object plays
the same role played by the heap when is used.

Parameters

 identifies a file mapping object obtained from either
 or .

 must be compatible with the mapping object’s access. The three
flag values we’ll use are , , and

. (This is the bit-wise “or” of the previous two flags.) See MSDN for
the other two flag values, and .

 and specify the starting location of the mapped
file region. The start address must be a multiple of the allocation granularity (nor-
mally 64K; use to get the actual value). Use a zero offset to
map from the beginning of the file.

 is the size, in bytes, of the mapped region. Zero indicates the entire file
at the time of the call.

 is similar except that you can specify the starting memory
address in an additional parameter. Windows fails if the process has already
mapped the requested space. See MSDN for more explanation.

Closing the Mapping Handle

You can elect to close the mapping handle returned by as
soon as succeeds if you do not need to use the mapping handle

Return: The starting address of the block (file view), or on
failure.

ptg

M E M O R Y - M A P P E D F I L E S 153

again to create other views on the file mapping. Many programmers prefer to do
this so as to free resources as soon as possible, and there is the benefit that you do
not need to maintain the mapping handle value. However, the example programs
and Figure 5–2 do not close the mapping handle until all views are unmapped.

Just as it is necessary to release memory allocated in a heap with ,
it is necessary to release file views.

Figure 5–3 shows the relationship between process address space and a
mapped file.

 forces the system to write “dirty” (changed) pages to disk.
Normally, a process accessing a file through mapping and another process accessing
it through conventional file I/O will not have coherent views of the file. Performing
the file I/O without buffering will not help because the mapped memory will not be
written to the file immediately.

Therefore, it is not a good idea to access a mapped file with and
; coherency is not ensured. On the other hand, processes that share a file

through shared memory will have a coherent view of the file. If one process changes a
mapped memory location, the other process will obtain that new value when it ac-
cesses the corresponding area of the file in its mapped memory. This mechanism is il-

Figure 5–3 A File Mapped into Process Address Space

ptg

154 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

lustrated in Figure 5–4, and the two views are coherent because both processes’
virtual addresses, although distinct, are in the same physical memory locations. The
obvious synchronization issues are addressed in Chapters 8, 9, and 10.5

UNIX, at the SVR4 and 4.3+BSD releases, supports the function, which is
similar to , but it does not support the page file. The parameters
specify the same information except that there is no mapping object. is the

 equivalent.

UNIX has different functions to map the page file to share memory:
 and .

There are no equivalents to the and
functions. Any normal file can be mapped directly.

5 Statements regarding coherency of mapped views do not apply to network files. The files must be local.

hF = CreateFile (...)
hM = CreateFileMapping (hF, ...,

"MyMapFile");
p = MVOF (hM);

/* assume it returns 1000
as a pointer value */

*p = 3;

PA PB

PA Virtual Address Space

1000

3000

3

Physical

Memory

PA Virtual-to-

Physical Map

hM = OpenFileMapping (
"MyMapFile");

p = MVOF (hM);
/* assume it returns 2000

as a pointer value */
i = *p;

PB Virtual Address Space

2000

File

3000

PB Virtual-to-

Physical Map

Figure 5–4 Shared Memory

ptg

M E M O R Y - M A P P E D F I L E S 155

File Mapping Limitations

File mapping, as mentioned previously, is a powerful and useful feature. The dis-
parity between Win32’s 64-bit file system and Win32’s 32-bit addressing limits
these benefits; Win64 does not have these limitations.

The principal Win32 problem is that if the file is large (greater than 2–3GB in
this case), it is not possible to map the entire file into virtual memory space. Fur-
thermore, the entire 3GB will not be available because virtual address space will
be allocated for other purposes and available contiguous blocks will be much
smaller than the theoretical maximum. Win64 removes this limitation.

When you’re dealing with large files that cannot be mapped to one view in
Win32, create code that carefully maps and unmaps file regions as they are
needed. This technique can be as complex as managing memory buffers, although
it is not necessary to perform the explicit reads and writes.

File mapping has two other notable limitations in both Win32 and Win64.

• An existing file mapping cannot be expanded. You need to know the maximum
size when creating the file mapping, and it may be difficult or impossible to
determine this size.

• There is no way to allocate memory within a mapped memory region without
creating your own memory management functions. It would be convenient if
there were a way to specify a file mapping and a pointer returned by

 and obtain a heap handle.

Summary: File Mapping

Here is the standard sequence required by file mapping.

1. Open the file. Be certain that it has at least access.

2. If the file is new, set its length either with (step 3) or by
using followed by .

3. Map the file with or .

4. Create one or more views with .

5. Access the file through memory references. If necessary, change the mapped
regions with and . Use SEH to protect
against exceptions.

6. On completion, perform, in order, , for the
mapping handle, and for the file handle.

ptg

156 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Example: Sequential File Processing with Mapped Files

 (Program 2–3) illustrates sequential file processing by encrypting files. This
is an ideal application for memory-mapped files because the most natural way to
convert the data is to process it one character at a time without being concerned
with file I/O. Program 5–3 simply maps the input file and the output file and con-
verts the characters one at a time.

This example clearly illustrates the trade-off between the file mapping com-
plexity required to initialize the program and the resulting processing simplicity.
This complexity may not seem worthwhile given the simplicity of a simple file I/O
implementation, but there is a significant performance advantage. Appendix C
and the Examples file contain additional performance comparisons and examples;
the highlights are summarized here.

• Compared with the best sequential file processing techniques, the
performance improvements can be 3:1 or greater.

• You can gain similar advantages with random access; the Examples file contains
a memory-mapped version () of Chapter 3’s
(Program 3–1) example so that you can compare the performance of two solutions
to the same problem. A batch file, exercises the two
programs with large data sets; Appendix C has results on several computers.6

• The performance advantage can disappear for larger files. In this example, on
Win32 systems, as the input file size approaches about one half of the physical
memory size, normal sequential scanning is preferable. The mapping perfor-
mance degrades at this point because the input file fills one half of the memory,
and the output file, which is twice as long, fills the other half, forcing parts of
the output files to be flushed to disk. Thus, on a 1.5GB RAM computer, mapping
performance degenerates for input files longer than about 700MB. Many file
processing applications deal with smaller files and can take advantage of file
mapping.

• Memory mapping performs well with multithreaded programs (Chapter 7). An
additional Examples file project, , implements a multithreaded “word
count” program using memory mapping, and you can compare its performance
to the file access version, .

• (Program 5–3) will work with files larger than 4GB but only on a
Win64 system.

6 Memory management is a good strategy for record access in many, but not all, situations. For exam-
ple, if records are as large as or larger than the page size, you may not get any benefit and may even
decrease performance compared to normal file access.

ptg

E X A M P L E : S E Q U E N T I A L F I L E P R O C E S S I N G W I T H M A P P E D F I L E S 157

Program 5–3 shows only the function, , without SEH (see the Exam-
ples file). The main program is the same as for Program 2–3. Run 5–3 shows the
results, comparing the output and timing with , which uses normal file access.

Program 5–3 File Conversion with Memory Mapping

ptg

158 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Example: Sorting a Memory-Mapped File

Another advantage of memory mapping is the ability to use convenient memory-
based algorithms to process files. Sorting data in memory, for instance, is much
easier than sorting records in a file.

Program 5–4 sorts a file with fixed-length records. This program, called
, is similar to Program 5–1 in that it assumes an 8-byte sort key at the

start of the record, but it is restricted to fixed records.

ptg

E X A M P L E : S O R T I N G A M E M O R Y - M A P P E D F I L E 159

The sorting is performed by the C library function . Notice
that requires a programmer-defined record comparison function, which is
the same as the function in Program 5–2.

This program structure is straightforward. Simply create the file mapping on
a temporary copy of the input file, create a single view of the file, and invoke

. There is no file I/O. Then the sorted file is sent to standard output using
, although a null character is appended to the file map.

Exception and error handling are omitted in the listing but are in the Exam-
ples solution on the book’s Web site.

Run 5–4 shows the same operations as Run 5–2 for . is much
faster, requiring about 3 seconds to sort a 1,000,000 record file, rather than over 2
minutes.

Program 5–4 Sorting a File with Memory Mapping

Run 5–3 File Conversion with Memory-Mapped Files

ptg

160 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

This implementation is straightforward, but there is an alternative that does
not require mapping. Just allocate memory, read the complete file, sort it in
memory, and write it. Such a solution, included in the Examples file, would be as
effective as Program 5–4 and is often faster, as shown in Appendix C.

ptg

E X A M P L E : S O R T I N G A M E M O R Y - M A P P E D F I L E 161

Based Pointers

File maps are convenient, as the preceding examples demonstrate. Suppose, how-
ever, that the program creates a data structure with pointers in a mapped file and
expects to access that file in the future. Pointers will all be relative to the virtual
address returned from , and they will be meaningless when
mapping the file the next time. The solution is to use based pointers, which are
actually offsets relative to another pointer. The Microsoft C syntax, available in
Visual C++ and some other systems, is:

Here are two examples.

Notice that the syntax forces use of the , a practice that is contrary to Windows
convention but which the programmer could easily fix with a typedef.

Run 5–4 Sorting in Memory with File Mapping

ptg

162 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Example: Using Based Pointers

Previous programs have shown how to sort files in various situations. The object,
of course, is to illustrate different ways to manage memory, not to discuss sorting
algorithms. Program 5–1 uses a binary search tree that is destroyed after each
sort, and Program 5–4 sorts an array of fixed-size records in mapped memory.

Suppose you need to maintain a permanent index file representing the sorted
keys of the original file. The apparent solution is to map a file that contains the
permanent index in a search tree or sorted key form to memory. Unfortunately,
there is a major difficulty with this solution. All pointers in the tree, as stored in
the file, are relative to the address returned by . The next time
the program runs and maps the file, the pointers will be useless.

Program 5–5, together with Program 5–6, solves this problem, which is char-
acteristic of any mapped data structure that uses pointers. The solution uses the

 keyword available with Microsoft C. An alternative is to map the file to
an array and use indexing to access records in the mapped files.

The program is written as yet another version of the command, this time
called . There are enough new features, however, to make it interesting.

• The records are of varying lengths.

• The program uses the first field of each record as a key of 8 characters.

• There are two file mappings. One mapping is for the original file, and the
other is for the file containing the sorted keys. The second file is the index file,
and each of its records contains a key and a pointer (base address) in the
original file. sorts the key file, much as in Program 5–4.

• The index file is saved and can be used later, and there is an option () that
bypasses the sort and uses an existing index file. The index file can also be
used to perform a fast key file search with a binary search (using, perhaps, the
C library function) on the index file.

• The input file itself is not changed; the index file is the result. does, how-
ever, display the sorted result, or you can use the option to suppress printing
and then use the option with an index file created on a previous run.

Figure 5–5 shows the relationship of the index file to the file to be sorted.
Program 5–5, , is the main program that sets up the file mapping, sorts
the index file, and displays the results. It calls a function, ,
shown in Program 5–6.

Run 5–6, after the program listings, shows operation, and the timing
can be compared to Run 5–4 for ; is much faster, as creating the
sorted index file requires numerous references to scattered locations in the

ptg

E X A M P L E : U S I N G B A S E D P O I N T E R S 163

mapped data file. However, once the index file is created, the option allows you
to access the sorted data very quickly.

Caution: These two programs make some implicit assumptions, which we’ll re-
view after the program listings and the run screenshot.

Program 5–5 Based Pointers in an Index File

Figure 5–5 Sorting with a Memory-Mapped Index File

sortMM MyFile

MyFile.idx

Ki: Key
Si: String
Pi: Based Pointer

Ki Pi Kj Pj Kk Pk · · ·

K0 S0 K1 S1 K2 S2MyFile · · ·

K0 P0 K1 P1 K2 P2 · · ·

qsort

ptg

164 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

ptg

E X A M P L E : U S I N G B A S E D P O I N T E R S 165

Program 5–6 is the function, which creates the index file.
It scans the input file to find the bound of each varying-length record to set up the
structure shown in Figure 5–5.

Program 5–6 Creating the Index File

ptg

166 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Run 5–6 Sorting Using Based Pointers and Mapping

ptg

D Y N A M I C L I N K L I B R A R I E S 167

A Comment about Alignment

 illustrates based pointers in mapped files. The program also allows for
different key length and key start positions, which Program 5–5 sets to and ,
respectively. However, the index file has the pointer directly after the key, so
these values should be a multiple of the pointer size (or) to avoid possible
alignment exceptions. An exercise asks you to overcome this limitation.

We’re also assuming implicitly that page sizes and return
values are multiples of pointer, , and other object sizes.

Dynamic Link Libraries

We have now seen that memory management and file mapping are important and
useful techniques in a wide class of programs. The OS itself also uses memory
management, and DLLs are the most visible and important use because Windows
applications use DLLs extensively. DLLs are also essential to higher-level tech-
nologies, such as COM, and many software components are provided as DLLs.

The first step is to consider the different methods of constructing libraries of
commonly used functions.

Static and Dynamic Libraries

The most direct way to construct a program is to gather the source code of all the
functions, compile them, and link everything into a single executable image.
Common functions, such as , can be put into a library to simplify the
build process. This technique was used with all the sample programs presented so
far, although there were only a few functions, most of them for error reporting.

This monolithic, single-image model is simple, but it has several disadvantages.

• The executable image may be large, consuming disk space and physical
memory at run time and requiring extra effort to manage and deliver to users.

• Each program update requires a rebuild of the complete program even if the
changes are small or localized.

• Every program in the computer that uses the functions will have a copy of the
functions, possibly different versions, in its executable image. This arrange-
ment increases disk space usage and, perhaps more important, physical
memory usage when several such programs are running concurrently.

• Distinct versions of the program, using different techniques, might be required
to get the best performance in different environments. For example, the
function is implemented differently in Program 2–3 () and Program 5–3

ptg

168 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

(). The only method of executing different implementations is to decide
which of the two versions to run based on environmental factors.

DLLs solve these and other problems quite neatly.

• Library functions are not linked at build time. Rather, they are linked at pro-
gram load time (implicit linking) or at run time (explicit linking). As a result,
the program image can be much smaller because it does not include the
library functions.

• DLLs can be used to create shared libraries. Multiple programs share a single
library in the form of a DLL, and only a single copy is loaded into memory. All
programs map the DLL code to their process address space, although each
process has a distinct copy of the DLL’s global variables. For example, the

 function was used by nearly every example program; a single DLL
implementation could be shared by all the programs.

• New versions or alternative implementations can be supported simply by
supplying a new version of the DLL, and all programs that use the library can
use the new version without modification.

• The library will run in the same processes as the calling program.

DLLs, sometimes in limited form, are used in nearly every OS. For example,
UNIX uses the term “shared libraries” for the same concept. Windows uses DLLs
to implement the OS interfaces, among other things. The entire Windows API is
supported by a DLL that invokes the Windows kernel for additional services.

Multiple Windows processes can share DLL code, but the code, when called,
runs as part of the calling process and thread. Therefore, the library will be able to
use the resources of the calling process, such as file handles, and will use the call-
ing thread’s stack. DLLs should therefore be written to be thread-safe. (See Chap-
ters 8, 9, and 10 for more information on thread safety and DLLs. Programs 12–5
and 12–6 illustrate techniques for creating thread-safe DLLs.) A DLL can also ex-
port variables as well as function entry points.

Implicit Linking

Implicit or load-time linking is the easier of the two techniques. The required
steps, using Microsoft Visual C++, are as follows.

1. The functions in a new DLL are collected and built as a DLL rather than, for
example, a console application.

ptg

D Y N A M I C L I N K L I B R A R I E S 169

2. The build process constructs a library file, which is a stub for the actual
code and is linked into the calling program at build time, satisfying the
function references. The file contains code that loads the DLL at
program load time. It also contains a stub for each function, where the stub
calls the DLL. This file should be placed in a common user library directory
specified to the project.

3. The build process also constructs a file that contains the executable
image. This file is typically placed in the same directory as the application
that will use it, and the application loads the DLL during its initialization.
The alternative search locations are described in the next section.

4. Take care to export the function interfaces in the DLL source, as described next.

Exporting and Importing Interfaces

The most significant change required to put a function into a DLL is to declare it
to be exportable (UNIX and some other systems do not require this explicit step).
This is achieved either by using a file or, more simply, with Microsoft C/C++,
by using the storage modifier as follows:

The build process will then create a file and a file. The file is
the stub library that should be linked with the calling program to satisfy the
external references and to create the actual links to the file at load time.

The calling or client program should declare that the function is to be imported
by using the storage modifier. A standard technique is
to write the include file by using a preprocessor variable created by appending the
Microsoft Visual C++ project name, in uppercase letters, with .

One further definition is necessary. If the calling (importing) client program is
written in C++, is defined, and it is necessary to specify the C
calling convention, using:

For example, if is defined as part of a DLL build in project
, the header file would contain:

ptg

170 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Visual C/C++ automatically defines when invoking the
compiler within the DLL project. A client project that uses the DLL does
not define , so the function name is imported from the library.

When building the calling program, specify the file. When executing the
calling program, ensure that the file is available to the calling program; this
is frequently done by placing the file in the same directory as the executable.
As mentioned previously, there is a set of DLL search rules that specify the order
in which Windows searches for the specified file as well as for all other DLLs
or executables that the specified file requires, stopping with the first instance
located. The following default safe DLL search mode order is used for both explicit
and implicit linking:

• The directory containing the loaded application.

• The system directory. You can determine this path with
; normally its value is .

• The 16-bit Windows system directory. There is no function to obtain this path,
and it is obsolete for our purposes.

• The Windows directory ().

• The current directory.

• Directories specified by the environment variable, in the order in which
they occur.

Note that the standard order can be modified, as explained in the “Explicit
Linking” section. For some additional detailed information on the search strategy,
see MSDN and the function. , described in
the next section, also alters the search strategy.

You can also export and import variables as well as function entry points, al-
though the examples do not illustrate this capability.

Explicit Linking

Explicit or run-time linking requires the program to request specifically that a
DLL be loaded or freed. Next, the program obtains the address of the required
entry point and uses that address as the pointer in the function call. The function

ptg

D Y N A M I C L I N K L I B R A R I E S 171

is not declared in the calling program; rather, you declare a variable as a pointer
to a function. Therefore, there is no need for a library at link time. The three
required functions are (or), ,
and . Note: The function definitions show their 16-bit legacy
through far pointers and different handle types.

The two functions to load a library are and .

In both cases, the returned handle (rather than ; you may
see the equivalent macro,) will be on failure. The suffix is
not required on the file name. files can also be loaded with the

 functions. Pathnames must use backslashes (); forward slashes () will
not work. The name is the one in the module definition file (see MSDN for
details).

Note: If you are using C++ and , the decorated name is exported,
and the decorated name is required for . Our examples avoid
this difficult problem by using C.

Since DLLs are shared, the system maintains a reference count to each DLL
(incremented by the two load functions) so that the actual file does not need to be
remapped. Even if the DLL file is found, will fail if the DLL is
implicitly linked to other DLLs that cannot be located.

 is similar to but has several flags that are
useful for specifying alternative search paths and loading the library as a data
file. The parameter is reserved for future use. can specify alter-
nate behavior with one of three values.

1. overrides the previously described
standard search order, changing just the first step of the search strategy. The
pathname specified as part of is used rather than the
directory from which the application was loaded.

ptg

172 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

2. allows the file to be data only, and there is no
preparation for execution, such as calling (see the “DLL Entry Point”
section later in the chapter).

3. means that is not called for
process and thread initialization, and additional modules referenced within
the DLL are not loaded.

When you’re finished with a DLL instance, possibly to load a different version
of the DLL, free the library handle, thereby freeing the resources, including vir-
tual address space, allocated to the library. The DLL will, however, remain loaded
if the reference count indicates that other processes are still using it.

After loading a library and before freeing it, you can obtain the address of any
entry point using .

 is an instance produced by or (see
the next paragraph). , which cannot be Unicode, is the entry point
name. The return result is in case of failure. , like “long pointer,” is
an anachronism.

You can obtain the file name associated with an handle using
. Conversely, given a file name (either a or file),
 will return the handle, if any, associated with this file if the

current process has loaded it.
The next example shows how to use the entry point address to invoke a function.

Example: Explicitly Linking a File Conversion Function

Program 2–3 is an encryption conversion program that calls the function
(Program 2–5) to process the file using file I/O. Program 5–3 () is an alter-

ptg

E X A M P L E : E X P L I C I T L Y L I N K I N G A F I L E C O N V E R S I O N F U N C T I O N 173

native function that uses memory mapping to perform exactly the same operation.
The circumstances under which is faster were described earlier. Further-
more, if you are running on a 32-bit computer, you will not be able to map files
larger than about 1.5GB.

Program 5–7 reimplements the calling program so that it can decide which
implementation to load at run time. It then loads the DLL and obtains the address
of the entry point and calls the function. There is only one entry point in
this case, but it would be equally easy to locate multiple entry points. The main
program is as before, except that the DLL to use is a command line parameter.
Exercise 5–10 suggests that the DLL should be determined on the basis of system
and file characteristics. Also notice how the address is cast to the appro-
priate function type using the required, but complex, C syntax. The cast even in-
cludes , the linkage type, which is also used by the DLL function.
Therefore, there are no assumptions about the build settings for the calling pro-
gram (“client”) and called function (“server”).

Program 5–7 File Conversion with Explicit Linking

}

ptg

174 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Building the DLLs

This program was tested with the two file conversion functions, which must be
built as DLLs with different names but identical entry points. There is only one
entry point in this case. The only significant change in the source code is the
addition of a storage modifier, , to export the function.

Run 5–7 shows the results, which are comparable to Run 5–3.

The DLL Entry Point

Optionally, you can specify an entry point for every DLL you create, and this entry
point is normally invoked automatically every time a process attaches or detaches
the DLL. , however, allows you to prevent entry point execution.
For implicitly linked (load-time) DLLs, process attachment and detachment occur
when the process starts and terminates. In the case of explicitly linked DLLs,

, , and cause the attachment and
detachment calls.

The entry point is also invoked when new threads (Chapter 7) are created or
terminated by the process.

The DLL entry point, , is introduced here but will not be fully
exploited until Chapter 12 (Program 12–5), where it provides a convenient way for

Run 5–7 Explicit Linking to a DLL

ptg

D L L V E R S I O N M A N A G E M E N T 175

threads to manage resources and so-called Thread Local Storage (TLS) in a
thread-safe DLL.

The value corresponds to the instance obtained from .
, if , indicates that the process attachment was caused by
; otherwise, it was caused by implicit load-time linking. Likewise,
 gives a value for process detachment.

 will have one of four values: ,
, , and . DLL entry point

functions are normally written as statements and return to indicate
correct operation.

The system serializes calls to so that only one thread at a time can
execute it (Chapter 7 introduces threads). This serialization is essential because

 must perform initializations that must complete without interruption.
As a consequence, however, there should not be any blocking calls, such as I/O or
wait functions (see Chapter 8), within the entry point, because they would prevent
other threads from entering. Furthermore, you cannot call other DLLs from

 (there are a few exceptions, such as).
 and , in particular, should never be called

from a DLL entry point, as that would create additional DLL entry point calls.
An advanced function, , will disable thread

attach/detach calls for a specified DLL instance. As a result, Windows does not
need to load the DLL’s initialization or termination code every time a thread is
created or terminates. This can be useful if the DLL is only used by some of the
threads.

DLL Version Management

A common problem with DLLs concerns difficulties that occur as a library is
upgraded with new symbols and features are added. A major DLL advantage is
that multiple applications can share a single implementation. This power,
however, leads to compatibility complications, such as the following.

ptg

176 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

• A new version may change behavior or interfaces, causing problems to exist-
ing applications that have not been updated.

• Applications that depend on new DLL functionality sometimes link with older
DLL versions.

DLL version compatibility problems, popularly referred to as “DLL hell,” can be
irreconcilable if only one version of the DLL is to be maintained in a single
directory. However, it is not necessarily simple to provide distinct version-specific
directories for different versions. There are several solutions.

• Use the DLL version number as part of the and file names, usually
as a suffix. For example, and are used
in the Examples projects to correspond with the book edition number. By using
either explicit or implicit linking, applications can then determine their ver-
sion requirements and access files with distinct names. This solution is com-
monly used with UNIX applications.

• Microsoft introduced the concept of side-by-side DLLs or assemblies and
components. This solution requires adding a manifest, written in XML, to the
application so as to define the DLL requirements. This topic is beyond the
book’s scope, but additional information can be found on the MSDN Web site.

• The .NET Framework provides additional support for side-by-side execution.

The first approach, including the version number as part of the file name, is used
in the Examples file, as mentioned in the first bullet.

To provide additional support so that applications can determine additional
DLL information beyond just the version number, is a user-
provided callback function; many Microsoft DLLs support this callback function
as a standard method to obtain version information dynamically. The function op-
erates as follows:

ptg

S U M M A R Y 177

• Information about the DLL is returned in the structure,
which contains fields for (the structure size),

, , , and .

• The last field, , can be set to if the
DLL cannot run on Windows 9x (this should no longer be an issue!) or to

 if there are no restrictions.

• The field should be set to . The normal
return value is .

• implements .

Summary

Windows memory management includes the following features.

• Logic can be simplified by allowing the Windows heap management and
exception handlers to detect and process allocation errors.

• Multiple independent heaps provide several advantages over allocation from a
single heap, but there is a cost of extra complexity to assure that blocks are
freed, or resized, from the correct heap.

• Memory-mapped files, also available with UNIX but not with the C library, al-
low files to be processed in memory, as illustrated by several examples. File
mapping is independent of heap management, and it can simplify many pro-
gramming tasks. Appendix C shows the performance advantage of using
memory-mapped files.

• DLLs are an essential special case of mapped files, and DLLs can be loaded
either explicitly or implicitly. DLLs used by numerous applications should
provide version information.

Looking Ahead

This completes coverage of what can be achieved within a single process. The next
step is to learn how to manage concurrent processing, first with processes
(Chapter 6) and then with threads (Chapter 7). Subsequent chapters show how to
synchronize and communicate between concurrent processing activities.

ptg

178 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Additional Reading

Memory Mapping, Virtual Memory, and Page Faults

Russinovich, Solomon, and Ionescu (Windows Internals: Including Windows
Server 2008 and Windows Vista, Fifth Edition) describe the important concepts,
and most OS texts provide good in-depth discussion.

Data Structures and Algorithms

Search trees and sort algorithms are explained in numerous texts, including Cor-
men, Leiserson, Rivest, and Stein’s Introduction to Algorithms.

Using Explicit Linking

DLLs and explicit linking are fundamental to the operation of COM, which is
widely used in Windows software development. Chapter 1 of Don Box’s Essential
COM shows the importance of and .

Exercises

5–1. Design and carry out experiments to evaluate the performance gains from
the flag with and . How are
the gains affected by the heap size and by the block size? Are there differ-
ences under different Windows versions? The Examples file contains a pro-
gram, , to help you get started on this exercise and the next
one.

5–2. Modify the test in the preceding exercise to determine whether gen-
erates exceptions or returns a null pointer when there is no memory. Is this
the correct behavior? Also compare performance with the results
from the preceding exercise.

5–3. Windows versions differ significantly in terms of the overhead memory in a
heap. Design and carry out an experiment to measure how many fixed-size
blocks each system will give in a single heap. Using SEH to detect when all
blocks have been allocated makes the program easier. A test program,

, in the Examples file will show this behavior.

5–4. Modify (Program 5–4) to create , which allocates a memory
buffer large enough to hold the file, and read the file into that buffer. There
is no memory mapping. Compare the performance of the two programs.

ptg

E X E R C I S E S 179

5–5. Compare random file access performance using conventional file access
(Chapter 3’s) and memory mapping ().

5–6. Program 5–5 exploits the pointers that are specific to Microsoft C.
If you have a compiler that does not support this feature (or simply for the
exercise), reimplement Program 5–5 with a macro, arrays, or some other
mechanism to generate the based pointer values.

5–7. Write a search program that will find a record with a specified key in a file
that has been indexed by Program 5–5. The C library function
would be convenient here.

5–8. Enhance (Programs 5–5 and 5–6) to remove all implicit alignment
assumptions in the index file. See the comments after the program listings.

5–9. Implement the program from Chapter 3 with memory mapping.

5–10. Modify Program 5–7 so that the decision as to which DLL to use is based on
the file size and system configuration. The file is not necessary, so
figure out how to suppress file generation. Use

 to determine the file system type. Create additional DLLs for the con-
version function, each version using a different file processing technique,
and extend the calling program to decide when to use each version.

5–11. Put the , , , and
utility functions into a DLL and rebuild some of the earlier programs. Do
the same with and , the command line option and argu-
ment processing functions. It is important that both the utility DLL and the
calling program also use the C library in DLL form. Within Visual Studio,
for instance, you can select “Use Run-Time Library (Multithreaded DLL)”
in the project settings. Note that DLLs must, in general, be multithreaded
because they will be used by threads from several processes. See the

 project in the Examples file for a solution.

5–12. Build project (in the Examples file), which uses . Run
the program on as many different Windows versions as you can access.
What are the major and minor version numbers for those systems, and
what other information is available? The following screenshot, Exercise
Run 5–12, shows the result on a Vista computer with four processors. The
“Max appl addr” value is wrong, as this is a 64-bit system. Can you fix this
defect?

ptg

180 C H A P T E R 5 M E M O R Y M A N A G E M E N T , M E M O R Y - M A P P E D F I L E S , A N D D L L S

Exercise Run 5–12 : System Version and Other Information

ptg

181

C H A P T E R

6 Process
Management

A process contains its own independent virtual address space with both code and
data, protected from other processes. Each process, in turn, contains one or more
independently executing threads. A thread running within a process can execute
application code, create new threads, create new independent processes, and man-
age communication and synchronization among the threads.

By creating and managing processes, applications can have multiple, concur-
rent tasks processing files, performing computations, or communicating with
other networked systems. It is even possible to improve application performance
by exploiting multiple CPU processors.

This chapter explains the basics of process management and also introduces
the basic synchronization operations and wait functions that will be important
throughout the rest of the book.

Windows Processes and Threads

Every process contains one or more threads, and the Windows thread is the basic
executable unit; see the next chapter for a threads introduction. Threads are
scheduled on the basis of the usual factors: availability of resources such as CPUs
and physical memory, priority, fairness, and so on. Windows has long supported
multiprocessor systems, so threads can be allocated to separate processors within
a computer.

From the programmer’s perspective, each Windows process includes resources
such as the following components:

• One or more threads.

• A virtual address space that is distinct from other processes’ address spaces.
Note that shared memory-mapped files share physical memory, but the shar-
ing processes will probably use different virtual addresses to access the
mapped file.

ptg

182 C H A P T E R 6 P R O C E S S M A N A G E M E N T

• One or more code segments, including code in DLLs.

• One or more data segments containing global variables.

• Environment strings with environment variable information, such as the
current search path.

• The process heap.

• Resources such as open handles and other heaps.

Each thread in a process shares code, global variables, environment strings,
and resources. Each thread is independently scheduled, and a thread has the
following elements:

• A stack for procedure calls, interrupts, exception handlers, and automatic
storage.

• Thread Local Storage (TLS)—An arraylike collection of pointers giving each
thread the ability to allocate storage to create its own unique data environ-
ment.

• An argument on the stack, from the creating thread, which is usually unique
for each thread.

• A context structure, maintained by the kernel, with machine register values.

Figure 6–1 shows a process with several threads. This figure is schematic and
does not indicate actual memory addresses, nor is it drawn to scale.

This chapter shows how to work with processes consisting of a single thread.
Chapter 7 shows how to use multiple threads.

Note: Figure 6–1 is a high-level overview from the programmer’s perspective.
There are numerous technical and implementation details, and interested readers
can find out more in Russinovich, Solomon, and Ionescu, Windows Internals: In-
cluding Windows Server 2008 and Windows Vista.

A UNIX process is comparable to a Windows process.

Threads, in the form of POSIX Pthreads, are now nearly universally available and
used in UNIX and Linux. Pthreads provides features similar to Windows threads,
although Windows provides a broader collection of functions.

Vendors and others have provided various thread implementations for many
years; they are not a new concept. Pthreads is, however, the most widely used
standard, and proprietary implementations are long obsolete. There is an open
source Pthreads library for Windows.

ptg

P R O C E S S C R E A T I O N 183

Process Creation

The fundamental Windows process management function is ,
which creates a process with a single thread. Specify the name of an executable
program file as part of the call.

It is common to speak of parent and child processes, but Windows does not ac-
tually maintain these relationships. It is simply convenient to refer to the process
that creates a child process as the parent.

Figure 6–1 A Process and Its Threads

ptg

184 C H A P T E R 6 P R O C E S S M A N A G E M E N T

 has 10 parameters to support its flexibility and power.
Initially, it is simplest to use default values. Just as with , it is
appropriate to explain all the parameters. Related functions are
then easier to understand.

Note first that the function does not return a ; rather, two separate
handles, one each for the process and the thread, are returned in a structure spec-
ified in the call. creates a new process with a single primary
thread (which might create additional threads). The example programs are al-
ways very careful to close both of these handles when they are no longer needed in
order to avoid resource leaks; a common defect is to neglect to close the thread
handle. Closing a thread handle, for instance, does not terminate the thread; the

 function only deletes the reference to the thread within the process
that called .

Parameters

Some parameters require extensive explanations in the following sections, and
many are illustrated in the program examples.

 and (this is an and not an
) together specify the executable program and the command line

arguments, as explained in the next section.
 and point to the process and thread security at-

tribute structures. values imply default security and will be used until
Chapter 15, which covers Windows security.

Return: only if the process and thread are successfully
created.

ptg

P R O C E S S C R E A T I O N 185

 indicates whether the new process inherits copies of the
calling process’s inheritable open handles (files, mappings, and so on). Inherited
handles have the same attributes as the originals and are discussed in detail in a
later section.

 combines several flags, including the following.

• indicates that the primary thread is in a suspended state
and will run only when the program calls .

• and are mutually exclusive;
don’t set both. The first flag creates a process without a console, and the
second flag gives the new process a console of its own. If neither flag is set, the
process inherits the parent’s console.

• should be set if is defined.

• specifies that the new process is the root of a
new process group. All processes in a group receive a console control signal
(or) if they all share the same console. Console control
handlers were described in Chapter 4 and illustrated in Program 4–5. These
process groups have limited similarities to UNIX process groups and are
described later in the “Generating Console Control Events” section.

Several of the flags control the priority of the new process’s threads. The possi-
ble values are explained in more detail at the end of Chapter 7. For now, just use
the parent’s priority (specify nothing) or .

 points to an environment block for the new process. If ,
the process uses the parent’s environment. The environment block contains name
and value strings, such as the search path.

 specifies the drive and directory for the new process. If , the
parent’s working directory is used.

 is complex and specifies the main window appearance and
standard device handles for the new process. We’ll use two principal techniques to
set the start up information. Programs 6–1, 6–2, 6–3, and others show the proper
sequence of operations, which can be confusing.

• Use the parent’s information, which is obtained from .

• First, clear the associated structure before calling
, and then specify the standard input, output, and error handles by set-

ting the standard handler fields (, ,
and). For this to be effective, also set another mem-
ber, , to , and set all the handles that the
child process will require. Be certain that the handles are inheritable and that

ptg

186 C H A P T E R 6 P R O C E S S M A N A G E M E N T

the flag is set. The “Inheritable Han-
dles” subsection gives more information.

 specifies the structure for containing the returned process, thread
handles, and identification. The structure is as follows:

Why do processes and threads need handles in addition to IDs? The ID is
unique to the object for its entire lifetime and in all processes, although the ID is
invalid when the process or thread is destroyed and the ID may be reused. On the
other hand, a given process may have several handles, each having distinct at-
tributes, such as security access. For this reason, some process management func-
tions require IDs, and others require handles. Furthermore, process handles are
required for the general-purpose, handle-based functions. Examples include the
wait functions discussed later in this chapter, which allow waiting on handles for
several different object types, including processes. Just as with file handles, pro-
cess and thread handles should be closed when no longer required.

Note: The new process obtains environment, working directory, and other in-
formation from the call. Once this call is complete, any changes
in the parent will not be reflected in the child process. For example, the parent
might change its working directory after the call, but the child
process working directory will not be affected unless the child changes its own
working directory. The two processes are entirely independent.

The UNIX/Linux and Windows process models are considerably different. First,
Windows has no equivalent to the UNIX function, which makes a copy of the
parent, including the parent’s data space, heap, and stack. is difficult to
emulate exactly in Windows, and while this may seem to be a limitation, is
also difficult to use in a multithreaded UNIX program because there are numer-
ous problems with creating an exact replica of a multithreaded program with ex-
act copies of all threads and synchronization objects, especially on a
multiprocessor computer. Therefore, , by itself, is not really appropriate in
any multithreaded application.

ptg

P R O C E S S C R E A T I O N 187

 is, however, similar to the common UNIX sequence of successive
calls to and (or one of five other functions). In contrast to
Windows, the search directories in UNIX are determined entirely by the
environment variable.

As previously mentioned, Windows does not maintain parent-child relationships
among processes. Thus, a child process will continue to run after the creating par-
ent process terminates. Furthermore, there are no UNIX-style process groups in
Windows. There is, however, a limited form of process group that specifies all the
processes to receive a console control event.

Windows processes are identified both by handles and by process IDs, whereas
UNIX has no process handles.

Specifying the Executable Image and the Command Line

Either or specifies the executable image
name. Usually, only is specified, with be-
ing . Nonetheless, there are detailed rules for .

• If is not , it specifies the executable module.
Specify the full path and file name, or use a partial name and the current
drive and directory will be used; there is no additional searching. Include the
file extension, such as or , in the name. This is not a command line,
and it should not be enclosed with quotation marks.

• If the string is , the first white-space-delimited
token in is the program name. If the name does not contain a
full directory path, the search sequence is as follows:

1. The directory of the current process’s image

2. The current directory

3. The Windows system directory, which can be retrieved with

4. The Windows directory, which is retrievable with

5. The directories as specified in the environment variable

The new process can obtain the command line using the usual
mechanism, or it can invoke to obtain the command line as a
single string.

Notice that the command line is not a constant string. A program could modify
its arguments, although it is advisable to make any changes in a copy of the
argument string.

It is not necessary to build the new process with the same UNICODE defini-
tion as that of the parent process. All combinations are possible. Using as

ptg

188 C H A P T E R 6 P R O C E S S M A N A G E M E N T

described in Chapter 2 is helpful in developing code for either Unicode or ASCII
operation.

Inheritable Handles

Frequently, a child process requires access to an object referenced by a handle in
the parent; if this handle is inheritable, the child can receive a copy of the parent’s
open handle. The standard input and output handles are frequently shared with
the child in this way, and Program 6-1 is the first of several examples. To make a
handle inheritable so that a child receives and can use a copy requires several
steps.

• The flag on the call determines whether
the child process will inherit copies of the inheritable handles of open files,
processes, and so on. The flag can be regarded as a master switch applying to
all handles.

• It is also necessary to make an individual handle inheritable, which is not the
default. To create an inheritable handle, use a struc-
ture at creation time or duplicate an existing handle.

• The structure has a flag, , that
should be set to . Also, set to .

The following code segment shows how to create an inheritable file or other
handle. In this example, the security descriptor within the security attributes
structure is ; Chapter 15 shows how to include a security descriptor.

A child process still needs to know the value of an inheritable handle, so the
parent needs to communicate handle values to the child using an interprocess
communication (IPC) mechanism or by assigning the handle to standard I/O in
the structure, as in the next example (Program 6–1) and in several
additional examples throughout the book. This is generally the preferred

ptg

P R O C E S S C R E A T I O N 189

technique because it allows I/O redirection in a standard way and no changes are
needed in the child program.

Alternatively, nonfile handles and handles that are not used to redirect standard
I/O can be converted to text and placed in a command line or in an environment
variable. This approach is valid if the handle is inheritable because both parent and
child processes identify the handle with the same handle value. Exercise 6–2 suggests
how to demonstrate this, and a solution is presented in the Examples file.

The inherited handles are distinct copies. Therefore, a parent and child might
be accessing the same file using different file pointers. Furthermore, each of the
two processes can and should close its own handle.

Figure 6–2 shows how two processes can have distinct handle tables with two dis-
tinct handles associated with the same file or other object. Process 1 is the parent, and
Process 2 is the child. The handles will have identical values in both processes if the
child’s handle has been inherited, as is the case with Handles 1 and 3.

On the other hand, the handle values may be distinct. For example, there are
two handles for File D, where Process 2 obtained a handle by calling
rather than by inheritance. Also, as is the case with Files B and E, one process
may have a handle to an object while the other does not. This would be the case
when the child process creates the handle. Finally, while not shown in the figure, a
process can have multiple handles to refer to the same object.

Figure 6–2 Process Handle Tables

Parent

Process 1’s

Object Table

Child

Process 2’s

Object Table

File A

File B

File C

File D

File E

Handle 1

Handle 2

Handle 3

Handle 4

Inheritable Inherited Handle 1

Handle 2

Handle 3

Handle 4CreateFile

CreateFile

Inherited

Not Inheritable

Not Inheritable

Inheritable

ptg

190 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Process Identities

A process can obtain the identity and handle of a new child process from the
 structure. Closing the child handle does not, of course,

destroy the child process; it destroys only the parent’s access to the child. A pair of
functions obtain current process identification.

 actually returns a pseudohandle and is not inheritable.
This value can be used whenever a process needs its own handle. You create a real
process handle from a process ID, including the one returned by

, by using the function. As is the case with all sharable
objects, the open call will fail if you do not have sufficient security rights.

Parameters

 determines the handle’s access to the process. Some of the
values are as follows.

• —This flag enables processes to wait for the process to
terminate using the wait functions described later in this chapter.

• —All the access flags are set.

• —It is possible to terminate the process with the
 function.

• —The handle can be used by
 and to obtain process information.

Return: A process handle, or on failure

ptg

D U P L I C A T I N G H A N D L E S 191

 specifies whether the new process handle is inheritable.
 is the identifier of the process to be opened, and the returned

process handle will reference this process.
Finally, a running process can determine the full pathname of the executable

used to run it with or , using a
 value for the parameter. A call with a non-null value will

return the DLL’s file name, not that of the file that uses the DLL.

Duplicating Handles

The parent and child processes may require different access to an object identified
by a handle that the child inherits. A process may also need a real, inheritable
process handle—rather than the pseudohandle produced by

—for use by a child process. To address this issue, the parent process can
create a duplicate handle with the desired access and inheritability. Here is the
function to duplicate handles:

Upon completion, receives a copy of the original handle,
. is a handle in the process indicated by

 and must have access;
 will fail if the source handle does not exist in the source process.

The new handle, which is pointed to by , is valid in the target pro-
cess, . Note that three processes are involved, including the
calling process. Frequently, these target and source processes are the calling process,
and the handle is obtained from . Also notice that it is possible,
but generally not advisable, to create a handle in another process; if you do this, you
then need a mechanism for informing the other process of the new handle’s identity.

 can be used for any handle type.

ptg

192 C H A P T E R 6 P R O C E S S M A N A G E M E N T

If is not overridden by in
, it has many possible values (see MSDN).

 is any combination of two flags.

• causes the source handle to be closed and can be
specified if the source handle is no longer useful. This option also assures that
the reference count to the underlying file (or other object) remains constant.

• uses the access rights of the duplicated handle,
and is ignored.

Reminder: The Windows kernel maintains a reference count for all objects;
this count represents the number of distinct handles referring to the object. This
count is not available to the application program. An object cannot be destroyed
(e.g., deleting a file) until the last handle is closed and the reference count
becomes zero. Inherited and duplicate handles are both distinct from the original
handles and are represented in the reference count. Program 6–1, later in the
chapter, uses inheritable handles.

Next, we learn how to determine whether a process has terminated.

Exiting and Terminating a Process

After a process has finished its work, the process (actually, a thread running in
the process) can call with an exit code.

This function does not return. Rather, the calling process and all its threads
terminate. Termination handlers are ignored, but there will be detach calls to

 (see Chapter 5). The exit code is associated with the process. A
from the main program, with a return value, will have the same effect as calling

 with the return value as the exit code.
Another process can use to determine the exit code.

ptg

E X I T I N G A N D T E R M I N A T I N G A P R O C E S S 193

The process identified by must have
 access (see , discussed earlier). points to the

 that receives the value. One possible value is , meaning that
the process has not terminated.

Finally, one process can terminate another process if the handle has
 access. The terminating function also specifies the exit code.

Caution: Before exiting from a process, be certain to free all resources that
might be shared with other processes. In particular, the synchronization resources
of Chapter 8 (mutexes, semaphores, and events) must be treated carefully. SEH
(Chapter 4) can be helpful in this regard, and the call can be in the
handler. However, and handlers are not executed when

 is called, so it is not a good idea to exit from inside a program.
 is especially risky because the terminated process will not

have an opportunity to execute its SEH or DLL functions. Console
control handlers (Chapter 4 and later in this chapter) are a limited alternative,
allowing one process to send a signal to another process, which can then shut
itself down cleanly.

Program 6–3 shows a technique whereby processes cooperate. One process
sends a shutdown request to a second process, which proceeds to perform an
orderly shutdown.

UNIX processes have a process ID, or , comparable to the Windows process ID.
 is similar to , but there are no Windows

equivalents to and because Windows has no process parents or
UNIX-like groups.

Conversely, UNIX does not have process handles, so it has no functions compara-
ble to or .

ptg

194 C H A P T E R 6 P R O C E S S M A N A G E M E N T

UNIX allows open file descriptors to be used after an if the file descriptor
does not have the flag set. This applies only to file descriptors,
which are then comparable to inheritable file handles.

UNIX , actually in the C library, is similar to ; to terminate
another process, signal it with .

Waiting for a Process to Terminate

The simplest, and most limited, method to synchronize with another process is to
wait for that process to complete. The general-purpose Windows wait functions in-
troduced here have several interesting features.

• The functions can wait for many different types of objects; process handles are
just the first use of the wait functions.

• The functions can wait for a single process, the first of several specified
processes, or all processes in a collection to complete.

• There is an optional time-out period.

The two general-purpose wait functions wait for synchronization objects to
become signaled. The system sets a process handle, for example, to the signaled
state when the process terminates or is terminated. The wait functions, which will
get lots of future use, are as follows:

Return: The cause of the wait completion, or for an
error (use for more information).

ptg

E N V I R O N M E N T B L O C K S A N D S T R I N G S 195

Specify either a single process handle () or an array of distinct object
handles in the array referenced by . , the size of the array,
should not exceed (defined as 64 in).

 is the time-out period in milliseconds. A value of 0 means
that the function returns immediately after testing the state of the specified
objects, thus allowing a program to poll for process termination. Use
for no time-out to wait until a process terminates.

, a parameter of the second function, specifies (if) that it is
necessary to wait for all processes, rather than only one, to terminate.

The possible successful return values for this function are as follows.

• means that the handle is signaled in the case of
 or all objects are simultaneously signaled in the

special case of with set to .

• , where ≤ . Subtract
from the return value to determine which process terminated when waiting
for any of a collection of processes to terminate. If several handles are sig-
naled, the returned value is the minimum of the signaled handle indices.

 is a possible base value when using mutex handles; see
Chapter 8.

• indicates that the time-out period elapsed before the wait
could be satisfied by signaled handle(s).

• indicates that the call failed; for example, the handle may not
have access.

• is not possible with processes. This value is discussed in
Chapter 8 along with mutex handles.

Determine the exit code of a process using , as
described in the preceding section.

Environment Blocks and Strings

Figure 6–1 includes the process environment block. The environment block
contains a sequence of strings of the form

ptg

196 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Each environment string, being a string, is -terminated, and the entire
block of strings is itself -terminated. is one example of a commonly
used environment variable.

To pass the parent’s environment to a child process, set to
 in the call. Any process, in turn, can interrogate or modify

its environment variables or add new environment variables to the block.
The two functions used to get and set variables are as follows:

 is the variable name. On setting a value, the variable is added to the
block if it does not exist and if the value is not . If, on the other hand, the
value is , the variable is removed from the block. The “ ” character cannot
appear in an environment variable name, since it’s used as a separator.

There are additional requirements. Most importantly, the environment block
strings must be sorted alphabetically by name (case-insensitive, Unicode order).
See MSDN for more details.

 returns the length of the value string, or on
failure. If the buffer is not long enough, as indicated by , then
the return value is the number of characters actually required to hold the complete
string. Recall that (Chapter 2) uses a similar mechanism.

Process Security

Normally, gives rights. There are, however,
several specific rights, including , ,

, , , and
. In particular, it can be useful to limit rights

to the parent process given the frequently mentioned dangers of terminating a run-
ning process. Chapter 15 describes security attributes for processes and other objects.

UNIX waits for process termination using and , but there are no
time-outs even though can poll (there is a nonblocking option). These
functions wait only for child processes, and there is no equivalent to the multiple

ptg

E X A M P L E : P A R A L L E L P A T T E R N S E A R C H I N G 197

wait on a collection of processes, although it is possible to wait for all processes in
a process group. One slight difference is that the exit code is returned with
and , so there is no need for a separate function equivalent to

.

UNIX also supports environment strings similar to those in Windows. (in
the C library) has the same functionality as except
that the programmer must be sure to have a sufficiently large buffer. ,

, and (not in the C library) are different ways to add, change,
and remove variables and their values, with functionality equivalent to

.

Example: Parallel Pattern Searching

Now is the time to put Windows processes to the test. This example, ,
creates processes to search for patterns in files, one process per search file. The
simple pattern search program is modeled after the UNIX utility, although
the technique would apply to any program that uses standard output. The search
program should be regarded as a black box and is simply an executable program
to be controlled by a parent process; however, the project and executable
() are in the Examples file.

The command line to the program is of the form

The program, Program 6–1, performs the following processing:

• Each input file, to , is searched using a separate process running the
same executable. The program creates a command line of the form

.

• The temporary file handle, specified to be inheritable, is assigned to the
 field in the new process’s start-up information structure.

• Using , the program waits for all search processes
to complete.

• As soon as all searches are complete, the results (temporary files) are
displayed in order, one at a time. A process to execute the utility (Program
2–3) outputs the temporary file.

• is limited to (64) han-
dles, so the program calls it multiple times.

• The program uses the process exit code to determine whether a specific
process detected the pattern.

ptg

198 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Figure 6–3 shows the processing performed by Program 6–1, and Run 6–1 shows
program execution and timing results.

Program 6–1 Parallel Searching

Figure 6–3 File Searching Using Multiple Processes

Parent Process

ExitProcess

grep pattern argv [3]

argv [1], argv [2], ..., argv [N+1]

for (i = 1; i <= N; i++) {
StartUp.hStdOut =

CreateFile (Temp [i])
CreateProcess (grep pattern

argv [i+1])
}

WaitForMultipleObjects;

···

/* Display search results */

for (i = 1; i <= N; i++) {
CreateProcess (cat Temp [i])
WaitForSingleObject;

}
ExitProcess

grep pattern argv

ExitProcess

grep pattern argv [2]

ExitProcess

·
·
·

All Searches

Complete

[N+1]

ptg

E X A M P L E : P A R A L L E L P A T T E R N S E A R C H I N G 199

ptg

200 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Run 6–1 Parallel Searching

ptg

P R O C E S S E S I N A M U L T I P R O C E S S O R E N V I R O N M E N T 201

Run 6–1 shows execution for large and small files, and the run con-
trasts sequential execution with parallel execution to perform the
same task. The test computer has four processors; a single or dual processor com-
puter will give different timing results. Notes after the run explain the test opera-
tion and results.

Run 6–1 uses files and obtains results as follows:

• The small file test searches two Examples files, and
, which contain names of U.S. presidents and English monarchs,

along with their dates of birth, death, and term in office. The “i” at the right
end of each line is a visual cue and has no other meaning. The same is true of
the “x” at the end of the -generated files.

• The large file test searches four -generated files, each with 10 mil-
lion 64-byte records. The search is for a specific record number (), and
each file has a different random key (the first 8 bytes).

• is more than four times faster than four sequential executions
(Real Time is 15 seconds compared to 77 seconds), so the multiple processes
gain even more performance than expected, despite the process creation over-
head.

• is Program 6–2, the next example. Notice, however, that the
system time is zero, as the time applies to itself, not the grep pro-
cesses that it creates.

Processes in a Multiprocessor Environment

In Program 6–1, the processes and their primary (and only) threads run almost
totally independently of one another. The only dependence is created at the end of
the parent process as it waits for all the processes to complete so that the output
files can be processed sequentially. Therefore, the Windows scheduler can and will
run the process threads concurrently on the separate processors of a multiprocessor
computer. As Run 6–1 shows, this can result in substantial performance improve-
ment when performance is measured as elapsed time to execute the program, and
no explicit program actions are required to get the performance improvement.

The performance improvement is not linear in terms of the number of proces-
sors due to overhead costs and the need to output the results sequentially. None-
theless, the improvements are worthwhile and result automatically as a
consequence of the program design, which delegates independent computational
tasks to independent processes.

It is possible, however, to constrain the processes to specific processors if you
wish to be sure that other processors are free to be allocated to other critical tasks.

ptg

202 C H A P T E R 6 P R O C E S S M A N A G E M E N T

This can be accomplished using the processor affinity mask (see Chapter 9) for a
process or thread.

Finally, it is possible to create independent threads within a process, and
these threads will also be scheduled on separate processors. Chapter 7 describes
threads and related performance issues.

Process Execution Times

You can determine the amount of time that a process has consumed (elapsed, ker-
nel, and user times) using the function.

The process handle can refer to a process that is still running or to one that
has terminated. Elapsed time can be computed by subtracting the creation time
from the exit time, as shown in the next example. The type is a 64-bit
item; create a union with a to perform the subtraction.

Chapter 3’s example showed how to convert and display file times, al-
though the kernel and user times are elapsed times rather than calendar times.

 is similar and requires a thread handle for a parameter.

Example: Process Execution Times

The next example (Program 6–2) implements the familiar (time print) util-
ity that is similar to the UNIX command (is supported by the Windows
command prompt, so a different name is appropriate). prints elapsed (or
real), user, and system times.

This program uses , a Windows function that returns the
complete command line as a single string rather than individual strings.

The program also uses a utility function, , to scan the command line
and skip past the executable name. is in the Examples file.

ptg

E X A M P L E : P R O C E S S E X E C U T I O N T I M E S 203

Program 6–2 Process Times

ptg

204 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Using the Command

 was useful to compare different programming solutions, such as the various
Caesar cipher () and sorting utilities, including (Program 2–3) and
(Program 5–5). Appendix C summarizes and briefly analyzes some additional re-
sults, and there are other examples throughout the book.

Notice that measuring a program such as (Program 6–1) gives kernel
and user times only for the parent process. Job objects, described near the end of
this chapter, allow you to collect information on a collection of processes. Run 6–1
and Appendix C show that, on a multiprocessor computer, performance can
improve as the separate processes, or more accurately, threads, run on different
processors. There can also be performance gains if the files are on different
physical drives. On the other hand, you cannot always count on such performance
gains; for example, there might be resource contention or disk thrashing that
could impact performance negatively.

Generating Console Control Events

Terminating a process can cause problems because the terminated process cannot
clean up. SEH does not help because there is no general method for one process to
cause an exception in another.1 Console control events, however, allow one
process to send a console control signal, or event, to another process in certain
limited circumstances. Program 4–5 illustrated how a process can set up a
handler to catch such a signal, and the handler could generate an exception. In
that example, the user generated a signal from the user interface.

It is possible, then, for a process to generate a signal event in another specified
process or set of processes. Recall the creation flag value,

. If this flag is set, the new process ID identifies a
group of processes, and the new process is the root of the group. All new processes
created by the parent are in this new group until another call
uses the flag.

One process can generate a or in a speci-
fied process group, identifying the group with the root process ID. The target pro-
cesses must have the same console as that of the process generating the event. In
particular, the calling process cannot be created with its own console (using the

 or flag).

1 Chapter 10 shows an indirect way for one thread to cause an exception in another thread, and the
same technique is applicable between threads in different processes.

ptg

E X A M P L E : S I M P L E J O B M A N A G E M E N T 205

The first parameter, then, must be one of either or
. The second parameter identifies the process group.

Example: Simple Job Management

UNIX shells provide commands to execute processes in the background and to ob-
tain their current status. This section develops a simple “job shell”2 with a similar
set of commands. The commands are as follows.

• uses the remaining part of the command line as the command for a
new process, or job, but the command returns immediately rather than
waiting for the new process to complete. The new process is optionally given
its own console, or is detached, so that it has no console at all. Using a new
console avoids console contention with and other jobs. This approach is
similar to running a UNIX command with the option at the end.

• lists the current active jobs, giving the job numbers and process IDs.
This is similar to the UNIX command of the same name.

• terminates a job. This implementation uses the
function, which, as previously stated, does not provide a clean shutdown.
There is also an option to send a console control signal.

It is straightforward to create additional commands for operations such as
suspending and resuming existing jobs.

Because the shell, which maintains the job list, may terminate, the shell
employs a user-specific shared file to contain the process IDs, the command, and
related information. In this way, the shell can restart and the job list will still be
intact. Furthermore, several shells can run concurrently. You could place this
information in the registry rather than in a temporary file (see Exercise 6–9).

Concurrency issues will arise. Several processes, running from separate com-
mand prompts, might perform job control simultaneously. The job management
functions use file locking (Chapter 3) on the job list file so that a user can invoke

2 Do not confuse these “jobs” with the Windows job objects described later. The jobs here are managed
entirely from the programs developed in this section.

ptg

206 C H A P T E R 6 P R O C E S S M A N A G E M E N T

job management from separate shells or processes. Also, Exercise 6–8 identifies a
defect caused by job id reuse and suggests a fix.

The full program in the Examples file has a number of additional features, not
shown in the listings, such as the ability to take command input from a file.

 will be the basis for a more general “service shell” in Chapter 13 (Program
13–3). Windows services are background processes, usually servers, that can be
controlled with start, stop, pause, and other commands.

Creating a Background Job

Program 6–3 is the job shell that prompts the user for one of three commands and
then carries out the command. This program uses a collection of job management
functions, which are shown in Programs 6–4, 6–5, and 6–6. Run 6–6 then demon-
strates how to use the system.

Program 6–3 Create, List, and Kill Background Jobs

ptg

E X A M P L E : S I M P L E J O B M A N A G E M E N T 207

ptg

208 C H A P T E R 6 P R O C E S S M A N A G E M E N T

ptg

E X A M P L E : S I M P L E J O B M A N A G E M E N T 209

Notice how the command creates the process in the suspended state
and then calls the job management function, (Program 6–4), to
get a new job number and to register the job and its associated process. If the job
cannot be registered for any reason, the job’s process is terminated immediately.
Normally, the job number is generated correctly, and the primary thread is
resumed and allowed to run.

Getting a Job Number

The next three programs show three individual job management functions. These
functions are all included in a single source file, .

The first, Program 6–4, shows the function. Notice the use of
file locking with a completion handler to unlock the file. This technique protects
against exceptions and inadvertent transfers around the unlock call. Such a trans-
fer might be inserted accidentally during code maintenance even if the original
program is correct. Also notice how the record past the end of the file is locked in
the event that the file needs to be expanded with a new record.

There’s also a subtle defect in this function; a code comment identifies it, and
Exercise 6–8 suggests a fix.

Program 6–4 Creating New Job Information

ptg

210 C H A P T E R 6 P R O C E S S M A N A G E M E N T

ptg

E X A M P L E : S I M P L E J O B M A N A G E M E N T 211

Listing Background Jobs

Program 6–5 shows the job management function.

Program 6–5 Displaying Active Jobs

ptg

212 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Finding a Job in the Job List File

Program 6–6 shows the final job management function, , which
obtains the process ID of a specified job number. The process ID, in turn, can be
used by the calling program to obtain a handle and other process status infor-
mation.

Program 6–6 Getting the Process ID from a Job Number

ptg

E X A M P L E : S I M P L E J O B M A N A G E M E N T 213

Run 6–6 Managing Multiple Processes

ptg

214 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Run 6–6 shows the job shell managing several jobs using , , and
 (Chapter 5). Notes on Run 6–6 include:

• This run uses the same four 640MB files (, etc.) as Run 6–1.

• You can quit and reenter and see the same jobs.

• A “Done” job is listed only once.

• The job uses the option, so the results appear in a separate console
(not shown in the screenshot).

• and the job contend for the main console, so some output
can overlap, although the problem does not occur in this example.

Job Objects

You can collect processes together into job objects where the processes can be
controlled together, and you can specify resource limits for all the job object
member processes and maintain accounting information.

The first step is to create an empty job object with , which
takes two arguments, a name and security attributes, and returns a job object
handle. There is also an function to use with a named object.

 destroys the job object.
 simply adds a process specified by a process

handle to a job object; there are just two parameters. A process cannot be a
member of more than one job, so fails if the
process associated with the handle is already a member of some job. A process
that is added to a job inherits all the limits associated with the job and adds its
accounting information to the job, such as the processor time used.

By default, a new child process created by a process in the job will also belong
to the job unless the flag is specified in the

 argument to .
Finally, you can specify control limits on the processes in a job using

.

ptg

E X A M P L E : U S I N G J O B O B J E C T S 215

• is a handle for an existing job object.

• specifies the information class for the limits
you wish to set. There are five values;
is one value and is used to specify information such as the total and per-
process time limits, working set size limits,3 limits on the number of active
processes, priority, and processor affinity (the processors of a multiprocessor
computer that can be used by threads in the job processes).

• points to the actual information required by the
preceding parameter. There is a different structure for each class.

• allows you to get the total
time (user, kernel, and elapsed) of the processes in a job.

• will terminate all processes in
the job object when you close the last handle referring to the object.

• The last parameter is the length of the preceding structure.

 obtains the current limits. Other information
classes impose limits on the user interface, I/O completion ports (see Chapter 14),
security, and job termination.

Example: Using Job Objects

Program 6–7, , illustrates using job objects to limit process exe-
cution time and to obtain user time statistics. is a simple exten-
sion of that adds a command line time limit argument, in seconds. This
limit applies to every process that manages.

When you list the running processes, you will also see the total number of pro-
cesses and the total user time on a four-processor computer.

Caution: The term “job” is used two ways here, which is confusing. First, the
program uses Windows job objects to monitor all the individual processes. Then,
borrowing some UNIX terminology, the program also regards each managed pro-
cess to be a “job.”

First, we’ll modify the usual order and show Run 6–7, which runs the command:

3 The working set is the set of virtual address space pages that the OS determines must be loaded in
memory before any thread in the process is ready to run. This subject is covered in most OS texts.

ptg

216 C H A P T E R 6 P R O C E S S M A N A G E M E N T

to limit each process to a minute. The example then runs to shell commands:

as in Run 6–6. Note how the command counts the processes that cre-
ates as well as those that creates to search the files, resulting in seven
processes total. There is also a lot of contention for the console, mixing output
from several processes, so you might want to run this example with the option.

There are also a few unexpected results, which are described for further inves-
tigation in Exercise 6–12.

Program 6–7 gives the listing; it’s an extension of
 (Program 6–3), so the listing is shortened to show the new code. There are

Run 6–7 Monitoring Processes with a Job Object

ptg

E X A M P L E : U S I N G J O B O B J E C T S 217

some deviations from the MSDN documentation, which are described in Exercise
6–12 for investigation.

Program 6–7 Monitoring Processes with a Job Object

ptg

218 C H A P T E R 6 P R O C E S S M A N A G E M E N T

ptg

S U M M A R Y 219

Summary

Windows provides a straightforward mechanism for managing processes and
synchronizing their execution. Examples have shown how to manage the parallel
execution of multiple processes and how to obtain information about execution
times. Windows does not maintain a parent-child relationship among processes, so
the programmer must manage this information if it is required, although job
objects provide a convenient way to group processes.

Looking Ahead

Threads, which are independent units of execution within a process, are described
in the next chapter. Thread management is similar in some ways to process man-
agement, and there are exit codes, termination, and waiting on thread handles. To
illustrate this similarity, (Program 6–1) is reimplemented with threads in
Chapter 7’s first example program.

Chapter 8 then introduces synchronization, which coordinates operation
between threads in the same or different processes.

ptg

220 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Exercises

6–1. Extend Program 6–1 () so that it accepts command line options and
not just the pattern.

6–2. Rather than pass the temporary file name to the child process in Program
6–1, convert the inheritable file handle to a (a requires 4
bytes in Win32; investigate the Win64 size) and then to a character
string. Pass this string to the child process on the command line. The child
process, in turn, must convert the character string back to a handle value to
use for output. The and programs in the Examples file
illustrate this technique. Is this technique advisable, or is it poor practice,
in your opinion?

6–3. Program 6–1 waits for all processes to complete before listing the results. It
is impossible to determine the order in which the processes actually
complete within the current program. Modify the program so that it can
also determine the termination order. Hint: Modify the call to

 so that it returns after each individual process
terminates. An alternative would be to sort by the process termination
times.

6–4. The temporary files in Program 6–1 must be deleted explicitly. Can you use
 when creating the temporary files so that

deletion is not required?

6–5. Determine any performance advantages (compared with sequential
execution) on different multiprocessor systems or when the files are on sep-
arate or network drives. Appendix C presents some partial results, as does
Run 6–1.

6–6. Can you find a way to collect the user and kernel time required by ?
It may be necessary to modify to use job objects.

6–7. Enhance the function (Program 6–5) so that it reports the
exit code of any completed job. Also, give the times (elapsed, kernel, and us-
er) used so far by all jobs.

6–8. The job management functions have a defect that is difficult to fix. Suppose
that a job is killed and the executive reuses its process ID before the process
ID is removed from the job management file. There could be an

 on the process ID that now refers to a totally different process. The fix
requires creating a helper process that holds duplicated handles for every
created process so that the ID will not be reused. Another technique would
be to include the process start time in the job management file. This time

ptg

E X E R C I S E S 221

should be the same as the process start time of the process obtained from
the process ID. Note: Process IDs will be reused quickly. UNIX, however, in-
crements a counter to get a new process ID, and IDs will repeat only after
the 32-bit counter wraps around. Therefore, Windows programs cannot as-
sume that IDs will not, for all practical purposes, be reused.

6–9. Modify so that job information is maintained in the registry
rather than in a temporary file.

6–10. Enhance so that the command will include a count of the
number of handles that each job is using. Hint: Use

 (see MSDN).

6–11. (in the listing) currently terminates a process if there is
no room in the table for a new entry. Enhance the program to reserve a ta-
ble location before creating the process, so as to avoid .

6–12. exhibits several anomalies and defects. Investigate and
fix or explain them, if possible.

• Run 6–7 shows seven total processes, all active, after the first two jobs
are started. This value is correct (do you agree?). After the jobs termi-
nate, there are now 10 processes, none of which are active. Is this a bug
(if so, is the bug in the program or in Windows?), or is the number cor-
rect?

• Program 6–7 shows plausible user time results in seconds (do you
agree?). It obtains these results by dividing the total user time by
1,000,000, implying that the time is returned in microseconds. MSDN,
however, says that the time is in 100 ns units, so the division should be
by 10,000,000. Investigate. Is MSDN wrong?

• Does the limit on process time actually work, and is the program imple-
mented correctly? (Program 5–1) is a time-consuming program
for experimentation.

ptg

This page intentionally left blank

ptg

223

C H A P T E R

7 Threads and
Scheduling

The thread is the basic unit of execution in Windows, and a process can contain
multiple, independent threads sharing the process’s address space and other
resources. Chapter 6 limited processes to a single thread, but there are many
situations in which multiple threads are desirable. This chapter describes and
illustrates Windows thread management and introduces program parallelism.
The example programs use threads to simplify program design and to enhance
performance. Chapter 8 continues with a description of synchronization objects
and the performance impact, positive and negative. Chapter 9 examines
performance tuning and trade-off issues and describes new NT6 locking and
thread pool features. Chapter 10 describes advanced synchronization
programming methods and models that greatly simplify the design and
development of reliable multithreaded programs. The remaining chapters and
example programs use threads and synchronization as a basic tool.

This chapter ends with a very brief discussion of fibers, which allow you to
create separate tasks within a thread, followed by an introduction to parallelism.
Fibers are rarely used, and many readers might wish to skip the topic.

Thread Overview

A thread is an independent unit of execution within a process. The multithreaded
programming challenge requires organization and coordination of thread
execution to simplify programs and to take advantage of the inherent parallelism
of the program and the host computer.

Traditionally, programs execute as a single thread of execution. While several
processes can execute concurrently, as in the Chapter 6 examples, and even
interact through mechanisms such as shared memory or pipes (Chapter 11),
concurrent single-threaded processes have several disadvantages.

• It is expensive and time consuming for the OS to switch running processes,
and, in cases such as the multiprocess search (, Program 6–1), the

ptg

224 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

processes are all executing the same program. Threads allow concurrent file
or other processing within a single process, reducing overall system overhead.

• Except in the case of shared memory, processes are not tightly coupled, and it
is difficult to share resources, such as open files.

• It is difficult and inefficient for single-threaded processes to manage several
concurrent and interacting tasks, such as waiting for and processing user
input, waiting for file or network input, and performing computation.

• I/O-bound programs, such as the Caesar cipher conversion program in
Chapter 2 (, Program 2–3) are confined to a simple read-modify-write
model. When you’re processing sequential files, it can be more efficient to
initiate as many read and write operations as possible. Windows also allows
asynchronous overlapped I/O (Chapter 14), but threads can frequently achieve
the same effect with less programming effort.

• The Windows executive will schedule independent threads on separate
processors of a multiprocessor1 computer, frequently improving performance
by exploiting the multiple processors to execute application components
concurrently.

This chapter discusses Windows threads and how to manage them. The
examples illustrate thread usage with parallel file searching and a multithreaded
sort. These two examples contrast I/O- and compute-intensive concurrent
activities performed with threads. The chapter also presents an overview of
Windows process and thread scheduling and concludes with a brief introduction to
parallelism.

Perspectives and Issues

This chapter and those that follow take the point of view that not only do threads
make certain programs simpler to design and implement but, with attention to a
few basic rules and programming models, threaded programs also can improve
performance and be reliable, easy to understand, and maintainable. Thread
management functions are very similar to the process management functions so
that, as just one example, there is a function that is
comparable to .

1 Multiple CPUs are common, even on laptops. Several processors may be on a single “multicore” chip,
and, in turn, a computer may have several multicore chips. In Edition 3, we used the term “symmetric
multiprocessing” (SMP), but this does not accurately describe multiple multicore chips in a single com-
puter. We use both “multiprocessor” and “multicore” from now on to describe multiple processors ac-
cessing common, shared memory.

ptg

T H R E A D B A S I C S 225

This point of view is not universally accepted. Many writers and software
developers mention thread risks and issues and prefer to use multiple processes
when concurrency is required. Common issues and concerns include the following.

• Threads share storage and other resources within a process, so one thread can
accidentally modify another thread’s data, leading to defects such as race con-
ditions and deadlocks.

• In certain circumstances, concurrency can drastically degrade, rather than
improve, performance.

• Converting legacy single-threaded programs to exploit threads can be chal-
lenging, partly for the reasons above as well as lack of program understanding.

These concerns are real but are generally avoidable with careful design and
programming, and many of the issues are inherent to concurrency, whether using
threads within a process, multiple processes, or special-purpose techniques, such
as Windows asynchronous I/O (Chapter 14).

Thread Basics

Figure 6–1 in the previous chapter shows how threads exist in a process environ-
ment. Figure 7–1 illustrates threads by showing a multithreaded server that can
process simultaneous requests from multiple networked clients; a distinct thread
is dedicated to each client. A Chapter 11 example implements this model.

Threads within a process share data and code, but individual threads also
have their own unique storage in addition to the shared data. Windows provides
data for individual threads in several ways. Be aware, however, that the data is
not totally protected from other threads within the process; the programmer must
assure that threads do not access data assigned to other threads.

• Each thread has its own stack for function calls and other processing.

• The calling process can pass an argument (in Figure 7–1), usually a
pointer, to a thread at creation time. This argument is actually on the thread’s
stack.

• Each thread can allocate its own Thread Local Storage (TLS) indexes and can
read and set TLS values. TLS, described later, provides small pointer arrays to
threads, and a thread can access only its own TLS array. Among other
advantages, TLS assures that threads will not modify one another’s data.

ptg

226 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

The thread argument can point to an arbitrary data structure. In Figure 7–1’s
server example, this structure might contain the current request and the thread’s
response to that request as well as other working storage.

Windows programs can exploit multiprocessor systems by allowing different
threads, even from the same process, to run concurrently on separate processors.
This capability, if used properly, can enhance performance, but without sufficient
care and a good strategy to exploit multiple processors, execution can actually be
slower than on a single-processor computer, as we’ll see in Chapter 9.

Thread Management

It should come as no surprise that threads, like any other Windows object, have
handles and that there is a system call to create an executable
thread in the calling process’s address space. As with processes, we will sometimes
speak of “parent” and “child” threads, although the OS does not make any such
distinction. has several unique requirements.

Figure 7–1 Threads in a Server Environment

TLS

TLS

TLS

Code

Shared Data

Constants

Thread-Thread

Communication

& Synchronization

SERVER SYSTEM

Arg

Server

Thread 2

Stack 2

Client 2

Arg

Thread 1

Specific Data

Server

Thread 1

Stack 1

Client 1

Arg

Server

Thread N

Stack N

Client N

Thread 2

Specific Data

Thread N

Specific Data

Status

Broadcast

and Monitor

TLS

Stack

Arg

Statistics

ptg

T H R E A D M A N A G E M E N T 227

CreateThread

The function allows you to:

• Specify the thread’s start address within the process’s code.

• Specify the stack size, and the stack space is allocated from the process’s
virtual address space. The default stack size is the parent’s virtual memory
stack size (normally 1MB). One page is initially committed to the stack. New
stack pages are committed as required until the stack reaches its maximum
size and cannot grow anymore.

• Specify a pointer to a thread argument. The argument can be nearly anything
and is interpreted by the thread and its parent.

• returns a thread’s ID value and its handle. A handle
value indicates a failure.

Parameters

 is the familiar security attributes structure.
 is the byte size of the new thread’s stack. Use to default to the

primary thread’s stack size.
 points to the thread function (within the calling process) to be

executed. This function accepts a single pointer argument and returns a 32-bit
 exit code. The thread can interpret the argument as a or a pointer.

The thread function signature, then, is as follows:

ptg

228 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

 is the pointer passed as the thread argument and is interpreted
by the thread and its parent, normally as a pointer to an argument structure.

, if , means that the thread is ready to run immediately.
If is , the new thread will be in the
suspended state, requiring a function call to move the thread to
the ready state.

 points to a that receives the new thread’s identifier. The
pointer can also be , indicating that no thread ID will be returned.

The function allows a thread to be created in another
process. Compared with , there is an additional parameter for the
process handle, and the function addresses must be in the target process’s address
space. is one of several interesting, and potentially dan-
gerous, ways for one process to affect another directly, and it might be useful in
writing, for example, a debugger. There is no way to call this function usefully and
safely in normal applications. Avoid it!

ExitThread

All threads in a process can exit using the function. A common alter-
native, however, is for a thread to return from the thread function using the exit
code as the return value. The thread’s stack is deallocated and all handles refer-
ring to the thread are signaled. If the thread is linked to one or more DLLs (either
implicitly or explicitly), then the functions (Chapter 4) of each DLL will
be called with as the “reason.”

When the last thread in a process exits, the process itself terminates.
One thread can terminate another thread with the func-

tion, but the thread’s resources will not be deallocated, completion handlers do not
execute, and there is no notification to attached DLLs. It is best if the thread termi-
nates itself with a statement; usage is strongly discour-
aged, and it has the same disadvantages as .

GetExitCodeThread

A terminated thread (again, a thread normally should terminate itself) will continue
to exist until the last handle to it is closed using . Any other thread,
perhaps one waiting for some other thread to terminate, can retrieve the exit code.

ptg

T H R E A D M A N A G E M E N T 229

 will contain the thread’s exit code. If the thread is still running,
the value is .

Thread Identity

You can obtain thread IDs and handles using functions that are similar to those
used with processes.

• returns a noninheritable pseudohandle to the calling
thread.

• obtains the thread ID rather than the handle.

• obtains a thread’s ID from its handle.

• creates a thread handle from a thread ID. was
very useful in (Program 6–3), and you can use in a
similar fashion.

Additional Thread Management Functions

While the thread management functions just discussed are sufficient in most
cases, including the examples in this book, two additional functions were
introduced in XP and Windows 2003 (that is, NT5). Brief descriptions follow.

1. , which requires Windows 2003 or later (XP does not
support it), finds the process ID of a thread from the thread’s handle. You
could use this function in a program that manages or interacts with threads in
other processes. If necessary, use to obtain a process handle.

2. determines whether the thread, identified by its
handle, has any outstanding I/O requests. For example, the thread might be
blocked on a operation. The result is the status at the time that the
function is executed; the actual status could change at any time if the target
thread completes or initiates an operation.

ptg

230 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

Suspending and Resuming Threads

Every thread has a suspend count, and a thread can execute only if this count is .
One thread can increment or decrement the suspend count of another thread
using and . Recall that a thread can be created in
the suspended state with a count of .

Both functions, if successful, return the previous suspend count.
indicates failure.

Waiting for Threads to Terminate

One thread can wait for another thread to terminate in the same way that threads
wait for process termination (Chapter 6). Use a wait function (

 or using thread handles instead of process
handles. Note that the handles in the array passed to
do not all need to be of the same type; for example, thread, process, and other han-
dle types can be mixed in a single call.

 can wait for only (64)
handles at one time, but you can perform a series of waits if you have a large num-
ber of threads. Program 6–1 already illustrated this technique; most programs in
this book will perform single waits.

The wait function waits for the object, indicated by the handle, to become
signaled. In the case of threads, and set the
object to the signaled state, releasing all other threads waiting on the object,
including threads that might wait in the future after the thread terminates. Once
a thread handle is signaled, it never becomes nonsignaled. The same is true of
process handles but not of handles to some other objects, such as mutexes and
events (see the next chapter).

Note that multiple threads can wait on the same object. Similarly, the
 function sets the process state and the states of all its threads to

signaled.

Threads are a well-established concept in many OSs, and historically, many UNIX
vendors and users have provided their own proprietary implementations. Some
thread libraries have been implemented outside the kernel. POSIX Pthreads are

ptg

U S I N G T H E C L I B R A R Y I N T H R E A D S 231

now the standard. Pthreads are part of all commercial UNIX and Linux imple-
mentations. The system calls are distinguished from normal UNIX system calls
by the prefix name. Pthreads are also supported on some proprietary
non-UNIX systems.

 is the equivalent of , and is the
equivalent of . One thread waits for another to exit with

. Pthreads provide the very useful function, which, un-
like , ensures that completion handlers and cancellation
handlers are executed. Thread cancellation would be a welcome addition to Win-
dows, but Chapter 10 will show a method to achieve the same effect.

Using the C Library in Threads

Most code requires the C library, even if it is just to manipulate strings. Historically,
the C library was written to operate in single-threaded processes, so some functions
use global storage to store intermediate results. Such libraries are not thread-safe be-
cause two separate threads might, for example, be simultaneously accessing the li-
brary and modifying the library’s global storage. Proper design of threaded code is
discussed again in Chapter 8, which describes Windows synchronization.

The function is an example of a C library function that is not thread-
safe. , which scans a string to find the next occurrence of a token, main-
tains persistent state between successive function calls, and this state is in static
storage, shared by all the threads calling the function.

Microsoft C solves such problems by supplying a thread-safe C library
implementation named . There is more. Do not use ;
if you do, there is a risk of different threads accessing and modifying the same
data that the library requires for correct operation. Instead, use a special C
function, , to start a thread and create thread-specific working
storage for . Use in place of to
terminate a thread.

Note: There is a function, intended to be simpler to use, but you
should never use it. First, does not have security attributes or flags
and does not return a thread ID. More importantly, it actually closes the thread
handle it creates, and the returned thread handle may be invalid by the time the
parent thread stores it. Also avoid ; it does not allow for a return value.

The arguments are exactly the same as for the Windows
functions but without the Windows type definitions; therefore, be sure to cast the

 return value to a to avoid warning messages. Be cer-
tain to define before any include files; this definition is in for
the sample programs. That is all there is to it. When you’re using the Visual Stu-
dio development environment, be sure to do the following:

ptg

232 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

• Open the pages.

• Under , expand .

• Select .

• For the , specify .

• Terminate threads with or simply use a statement at
the end of the thread routine.

All examples will operate this way, and the programs will never use
 directly, even if the thread functions do not use the C library.

Thread-Safe Libraries

User-developed libraries must be carefully designed to avoid thread safety issues,
especially when persistent state is involved. A Chapter 12 example (Program 12–
5), where a DLL maintains state in a parameter, shows one strategy.

Another Chapter 12 example (Program 12–6) demonstrates an alternative
approach that exploits the function and TLS, which is described later in
this chapter.

Example: Multithreaded Pattern Searching

Program 6–1, , used processes to search multiple files simultaneously.
Program 7–1, , includes the pattern searching source code so that
threads can perform the searching within a single process. The pattern searching
code relies on the C library for file I/O. The main control program is similar to the pro-
cess implementation.

This example also shows that a form of asynchronous I/O is possible with threads
without using the explicit methods of Chapter 14. In this example, the program is
managing concurrent I/O to multiple files, and the main thread, or any other thread,
can perform additional processing before waiting for I/O completion. In the author’s
opinion, threads are a much simpler method of achieving asynchronous I/O, and
Chapter 14 compares the methods, allowing readers to form their own opinions. We
will see, however, that asynchronous I/O, combined with I/O completion ports, is use-
ful and often necessary when the number of threads is large. Furthermore, as of NT6,
extended asynchronous I/O often performs very well.

, for the purposes of illustration, differs in another way from .
Here, waits for a single thread to terminate rather than
waiting for all the threads. The appropriate output is displayed before waiting for
another thread to complete. The completion order will, in most cases, vary from one

ptg

E X A M P L E : M U L T I T H R E A D E D P A T T E R N S E A R C H I N G 233

run to the next. It is easy to modify the program to display the results in the order of
the command line arguments; just imitate .

Finally, notice that there is a limit of 64 threads due to the value of
, which limits the number of handles in the

 call. If more threads are required, create the appropriate logic to loop
on either or .

Caution: performs asynchronous I/O in the sense that separate threads
are concurrently, and synchronously, reading different files with read operations that
block until the read is complete. You can also concurrently read from the same file if
you have distinct handles on the file (typically, one per thread). These handles should
be generated by rather than . Chapter 14 describes
asynchronous I/O, with and without user threads, and an example in the Examples
file (; see Chapter 14) has several threads performing I/O to the same file.

Note: You can perform all sorts of parallel file processing using this design. All
that is required is to change the “ ” function at the end of Program 7–1. An ex-
ercise suggests that you implement a parallel word count () program this way, but
you could also edit files or compile source code files in parallel.

Program 7–1 Multithreaded Pattern Searching

ptg

234 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

ptg

P E R F O R M A N C E I M P A C T 235

Run 7–1 shows grepMT operation and compares the performance with
grepMP, using the same four 640MB files.

Performance Impact

 and are comparable in terms of program structure and
complexity, but has the expected advantage of better performance; it is
more efficient for the kernel to switch between threads than between processes.
Run 7–1 shows that the theoretical advantage is real, but not large (12.554 versus
14.956 seconds). Specifically, if you are processing multiple large files of about the
same size, with one thread per file, performance improves nearly linearly with the

Run 7–1 Multithreaded Pattern Searching

ptg

236 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

number of files up to the number of processors on the computer. You may not see
this improvement with smaller files, however, because of the thread creation and
management overhead. Chapter 9 shows how to improve performance slightly
more with NT6 thread pools.

Both implementations exploit multiprocessor systems, giving a considerable im-
provement in the elapsed time; threads, whether in the same process or in different
processes, run in parallel on the different processors. The measured user time actu-
ally exceeds the elapsed time because the user time is the total for all the processors.

The Examples file contains a word counting example, , which has the same
structure as and, on a multiprocessor computer, is faster than the Cygwin
command (Cygwin, an open source set of UNIX/Linux commands, implements).

There is a common misconception, however, that this sort of parallelism using
either or yields performance improvements only on multiprocessor
systems. You can also gain performance when there are multiple disk drives or some
other parallelism in the storage system. In such cases, multiple I/O operations to
different files can run concurrently.

The Boss/Worker and Other Threading Models

 illustrates the “boss/worker” threading model, and Figure 6–3 illustrates
the relationship if “thread” is substituted for “process.” The boss thread (the main
thread in this case) assigns tasks for the worker threads to perform. Each worker
thread is given a file to search, and the worker threads pass their results to the
boss thread in a temporary file.

There are numerous variations, such as the work crew model in which the
workers cooperate on a single task, each performing a small piece. The next
example uses a work crew (see Figure 7–2). The workers might even divide up the
work themselves without direction from the boss. Multithreaded programs can
employ nearly every management arrangement that humans use to manage
concurrent tasks.

The two other major models are the client/server model (illustrated in
Figure 7–1 and developed in Chapter 11) and the pipeline model, where work
moves from one thread to the next (see Chapter 10 and Figure 10–1 for an exam-
ple of a multistage pipeline).

There are many advantages to using these models when designing a
multithreaded program, including the following.

• Most multithreaded programming problems can be solved using one of the
standard models, expediting design, development, and debugging.

ptg

E X A M P L E : M E R G E - S O R T — E X P L O I T I N G M U L T I P L E P R O C E S S O R S 237

• Not only does using a well-understood and tested model avoid many of the
mistakes that are so easy to make in a multithreaded program, but the model
also helps you obtain the best performance.

• The models correspond naturally to the structures of most programming
problems.

• Programmers who maintain the program will be able to understand it much
more easily if documentation describes the program in terms that everyone
understands.

• Troubleshooting an unfamiliar program is much easier if you analyze it in
terms of models. Frequently, an underlying problem is found when the
program is seen to violate the basic principles of one of the models.

• Many common defects, such as race conditions and deadlocks, are also de-
scribed by simple models, as are effective methods of using the synchroniza-
tion objects described in Chapters 9 and 10.

These classical thread models are used in many OSs. The Component Object
Model (COM), widely used in Windows systems, uses different terminology.

Example: Merge-Sort—Exploiting Multiple Processors

This example, diagrammed in Figure 7–2, shows how to use threads to get
significant performance gains, especially on a multiprocessor computer. The basic
idea is to divide the problem into component tasks, give each task to a separate
thread, and then combine the results to get the complete solution. The Windows
executive will automatically assign the threads to separate processors, so the
threads will execute in parallel, reducing elapsed time.

This strategy, often called the divide and conquer strategy or the work crew
model, is useful both for performance and as an algorithm design method.

, Program 7–1, could be considered one example; it creates a thread for
each file or pattern matching task.

Next, consider another example in which a single task, sorting a file, is
divided into subtasks delegated to separate threads.

Merge-sort, in which the array to be sorted is divided into smaller arrays, is a
classic divide and conquer algorithm. Each small array is sorted individually, and
the individual sorted arrays are merged in pairs to yield larger sorted arrays. The
pairwise merging continues until completion. Generally, merge-sort starts with
small arrays, which can be sorted efficiently with a simple algorithm. This exam-
ple starts with larger arrays so that there can be one array for each processor.
Figure 7–2 is a sketch of the algorithm.

ptg

238 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

Program 7–2 shows the implementation details. The user specifies the num-
ber of tasks on the command line. Exercise 7–9 suggests that use

 to find the number of processors and then create one thread per
processor.

Notice that the program runs efficiently on single-processor systems with
sufficient memory and gains a significant performance improvement on
multiprocessor systems. Caution: The algorithm as shown will work only if the
number of records in the sort file is divisible by the number of threads and if the
number of threads is a power of 2. Exercise 7–8 removes these limitations.

Note: In understanding this program, concentrate on the thread management
logic separately from the logic that determines which portion of the array a thread
should sort. Notice too that the C library function is used, so there is no need
to be concerned with developing an efficient basic sort function.

Additional Point to Notice: The thread creation loop (look for the comment
“Create the sorting threads” on the second page of the listing) creates the worker
threads in the suspended state. The threads are resumed only after all the worker
threads are created. The reason for this can be seen from Figure 7–2; consider what
would happen if Thread 0 waits for Thread 1 before Thread 1 is created. There
would then be no handle to wait for. This is an example of a “race” condition where
two or more threads make unsafe assumptions about the progress of the other
threads. Exercises 7–10 and 7–13 investigate this further.

Array

qsort

qsort

qsort

qsort

merge

merge

merge

Thread 0

Thread 1

Thread 2

Thread 3

for (i = 0; i < 4; i++)
CreateThread ()

Wait (Thread 0)
/* Array is sorted */

wait (Thread 3)

wait (Thread 2)wait (Thread 1)

Figure 7–2 Merge-Sort with Multiple Threads

ptg

E X A M P L E : M E R G E - S O R T — E X P L O I T I N G M U L T I P L E P R O C E S S O R S 239

Program 7–2 Merge-Sort with Multiple Threads

ptg

240 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

ptg

E X A M P L E : M E R G E - S O R T — E X P L O I T I N G M U L T I P L E P R O C E S S O R S 241

ptg

242 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

Run 7–2a shows sorting of large and small files, with 1, 2, 4, and 8 threads for
the large file. The test computer has four processors, and four threads give the
best results. Also note that the first single-thread run is slower than the second;
this may be explained by the fact that the file is cached in memory during the sec-
ond run. (Program 5–4) was the best previous result, 3.123 seconds.

Run 7–2a Sorting with Multiple Threads

ptg

E X A M P L E : M E R G E - S O R T — E X P L O I T I N G M U L T I P L E P R O C E S S O R S 243

An additional screenshot, Run 7–2b, uses a 5,000,000 record (320MB) file so
that the time improvements are more significant.

Performance

Multiprocessor systems give good results when the number of threads is the same
as the number of processors. Performance improves with more threads but not lin-
early because of the merging. Additional threads beyond the processor count slow
the program.

Divide and conquer is more than just a strategy for algorithm design; it can
also be the key to exploiting multiprocessors. The single-processor results can
vary. On a computer with limited memory (that is, insufficient physical memory to
hold the entire file), using multiple threads might increase the sort time because
the threads contend for available physical memory. On the other hand, multiple
threads can improve performance with a single processor when there is sufficient
memory. The results are also heavily dependent on the initial data arrangement.

Run 7–2b Sorting with Multiple Threads and a Larger File

ptg

244 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

Introduction to Program Parallelism

Programs 7–1 and 7–2 share some common properties that permit “paralleliza-
tion” so that subtasks can execute concurrently, or “in parallel” on separate pro-
cessors. Parallelization is the key to future performance improvement, since we
can no longer depend on increased CPU clock rates and since multicore and multi-
processor systems are increasingly common.

Chapter 10 discusses these technology trends and parallelism in more detail
and relates these trends to the thread pools available in NT6 (Windows 7, Vista,
and Server 2008). However, , , and have already illustrated
the potential performance benefits from parallelism. The properties that enabled
parallelism include the following:

• There are separate worker subtasks that can run independently, without any
interaction between them. For example, can process each file indepen-
dently, and can sort subsets of the entire array.

• As subtasks complete, a master program can combine, or “reduce,” the results
of several subtasks into a single result. Thus, merges sorted arrays to
form larger sorted arrays. and simply display the results from
the individual files, in order.

• The programs are “lock-free” and do not need to use mutual exclusion locks,
such as the mutexes described next in Chapter 8. The only synchronization re-
quired is for the boss thread to wait for the worker threads to complete.

• The worker subtasks run as individual threads, potentially running on sepa-
rate processors.

• Program performance scales automatically, up to some limit, as you run on
systems with more processors; the programs themselves do not, in general, de-
termine the processor count on the host computer. Instead, the Windows ker-
nel assigns worker subtasks to available processors.

• If you “serialize” the program by replacing the thread creation calls with di-
rect function calls and remove the wait calls, you should get precisely the
same results as the parallel program.2 The serialized program is, moreover,
much easier to debug.

2 This statement fails, or is only approximately true, if operation order and associativity are important.
For example, if you sum floating-point numbers, the order is important. In these cases, the multi-
threaded results will also vary from run to run, and the serial execution is one of many possible multi-
threaded execution sequences.

ptg

T H R E A D L O C A L S T O R A G E 245

• The maximum performance improvement is limited by the program’s “paral-
lelism,” thread management overhead, and computations that cannot be par-
allelized. The maximum parallelism for is determined by the
command line parameter specifying the number of threads, although the
merging steps do not use all the threads. parallelism cannot be larger
than the number of files on the command line. Computations that cannot be
parallelized include initialization and reducing worker results.

Be aware, however, that these two examples are relatively simple and “coarse
grained.” The subtasks are easy to identify and run for a relatively long time pe-
riod, although the subtasks will require different amounts of time, depending pri-
marily on the file sizes. In general, correct program parallelization that improves
performance significantly can be challenging.

Thread Local Storage

Threads may need to allocate and manage their own storage independently of and
protected from other threads in the same process. One technique is to have the
creating thread call (or) with
pointing to a data structure that is unique for each thread. The thread can then
allocate additional data structures and access them through .
Program 7–1 used this technique.

Windows also provides TLS, which gives each thread its own array of pointers.
Figure 7–3 shows this TLS arrangement.

Initially, no TLS indexes (rows) are allocated, but new rows can be allocated
and deallocated at any time, with at least (64) indexes

Thread Number →
1 2 3 →

TLS 0

Index 1

↓
2

3

4

↓

Figure 7–3 Thread Local Storage within a Process

ptg

246 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

for any process. The number of columns can change as new threads are created
and old ones terminate.

The first issue is TLS index management. The primary thread is a logical
place to do this, but any thread can manage thread indexes.

 returns the allocated index (≥ 0), with – () if no index
is available.

An individual thread can get and set its values (void pointers) from its slot
using a TLS index.

The programmer must ensure that the TLS index parameter is valid—that is,
that it has been allocated with and has not been freed.

TLS provides a convenient mechanism for storage that is global within a
thread but unavailable to other threads. Normal global storage is shared by all
threads. Although no thread can access another thread’s TLS, any thread can call

 and destroy an index for all threads, so use carefully. TLS is
frequently used by DLLs as a replacement for global storage in a library; each
thread, in effect, has its own global storage. TLS also provides a convenient way
for a calling program to communicate with a DLL function, and this is the most
common TLS use. An example in Chapter 12 (Program 12–5) exploits TLS to build
a thread-safe DLL; DLL thread and process attach/detach calls (Chapter 5) are
another important element in the solution.

Process and Thread Priority and Scheduling

The Windows kernel always runs the highest-priority thread that is ready for
execution. A thread is not ready if it is waiting, suspended, or blocked for some
reason.

ptg

P R O C E S S A N D T H R E A D P R I O R I T Y A N D S C H E D U L I N G 247

Threads receive priority relative to their process priority classes. Process pri-
ority classes are set initially by (Chapter 6), and each has a base
priority, with values including:

• , for threads that will run only when the system is
idle.

• , indicating no special scheduling requirements.

• , indicating time-critical tasks that should be exe-
cuted immediately.

• , the highest possible priority.

The two extreme classes are rarely used, and the normal class can be used
normally, as the name suggests. Windows is not a real-time OS, and using

 can prevent other essential threads from running.
Set and get the priority class with:

You can use the values listed above as well as:

• Two additional priority classes,
below and

(which is above).

• , which lowers the priority of the process
and its threads for background work without affecting the responsiveness of
foreground3 processes and threads. The handle must represent the calling
process; a process cannot put another into background mode. You need NT6
(Windows Vista or later) to use this mode.

• , which restores the process priority to the
value before it was set with .

3 Foreground threads and processes (“tasks”) are generally those that need to respond quickly, such as
a thread that interacts directly with the user. Background tasks do not need to respond quickly; exam-
ples include file processing or time-consuming computations.

ptg

248 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

A process can change or determine its own priority or that of another process,
security permitting.

Thread priorities are either absolute or are set relative to the process base pri-
ority. At thread creation time, the priority is set to that of the process. The relative
thread priorities are in a range of ±2 “points” from the process’s base. The sym-
bolic names of the resulting common thread priorities, starting with the five rela-
tive priorities, are:

•

•

•

•

•

• is 15, or 31 if the process class is
.

• is 1, or 16 for pro-
cesses.

• and
are similar to and

. You need Windows Vista, or later, to use these modes.

Use these values to set and read a thread’s relative priority. Note the signed
integer priority argument.

There are actually two additional thread priority values. They are absolute
rather than relative and are used only in special cases.

• is a value of (or for real-time processes).

• is (or for real-time processes).

ptg

T H R E A D S T A T E S 249

Thread priorities change automatically with process priority. In addition,
Windows may adjust thread priorities dynamically on the basis of thread behavior.
You can enable and disable this feature with the
function.

Thread and Process Priority Cautions

Use high thread priorities and process priority classes with caution or, better yet,
not at all, unless there is a proven requirement. Definitely avoid real-time priori-
ties for normal user processes; our examples never use real-time priorities, and
real-time applications are out of scope. Among other dangers, user threads may
preempt threads in the executive.

Furthermore, everything that we say in the following chapters about the
correctness of threaded programs assumes, without comment, that thread
scheduling is fair. Fairness ensures that all threads will, eventually, run. Without
fairness, a low-priority thread could hold resources required by a high-priority
thread. Thread starvation and priority inversion are terms used to describe the
defects that occur when scheduling is not fair.

Thread States

Figure 7–4, which is taken from Custer’s Inside Windows NT, page 210 (also see
Russinovich, Solomon, and Ionescu), shows how the executive manages threads
and shows the possible thread states. This figure also shows the effect of program
actions. Such state diagrams are common to all multitasking OSs and help clarify
how a thread is scheduled for execution and how a thread moves from one state to
another.

Here is a quick summary of the fundamentals; see the references for more in-
formation.

• A thread is in the running state when it is actually running on a processor.
More than one thread can be in the running state on a multiprocessor computer.

• The executive places a running thread in the wait state when the thread per-
forms a wait on a nonsignaled handle, such as a thread or process handle, or
on a synchronization object handle (Chapter 8). I/O operations will also wait
for completion of a disk or other data transfer, and numerous other functions
can cause waiting. It is common to say that a thread is blocked, or sleeping,
when in the wait state.

ptg

250 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

• A thread is ready if it could be running. The executive’s scheduler could put it
in the running state at any time. The scheduler will run the highest-priority
ready thread when a processor becomes available, and it will run the one that
has been in the ready state for the longest time if several threads have the
same high priority. The thread moves through the standby state before enter-
ing the ready state.

• Normally, the scheduler will place a ready thread on any available processor.
The programmer can specify a thread’s processor affinity (see Chapter 9),
which will limit the processors that can run that specific thread. In this way,
the programmer can allocate processors to threads and prevent other threads
from using these processors, helping to assure responsiveness for some
threads. The appropriate functions are and

. can specify a pre-
ferred processor that the scheduler will use whenever possible; this is less
restrictive than assigning a thread to a single processor with the affinity
mask.

Figure 7–4 Thread States and Transitions
(From Inside Windows NT, by Helen Custer. Copyright ©
1993, Microsoft Press. Reproduced by permission of Micro-
soft Press. All rights reserved.)

Terminated

Running

Initialized

Waiting

Transition

Ready

Standby

Execution

completes

Reinitialize

Create and initialize thread object

Preempt (or time

quantum ends)

Context-switch to it

and start its execution

(dispatching)

Preempt

Select for

execution

Place in

ready queue

Thread

waits on

an object

handle

Resources

become

availableResources

Unavailable

signaled state

Set object to

ptg

P I T F A L L S A N D C O M M O N M I S T A K E S 251

• The executive will move a running thread to the ready state if the thread’s
time slice expires without the thread waiting. Executing will also
move a thread from the running state to the ready state.

• The executive will place a waiting thread in the ready state as soon as the
appropriate handles are signaled, although the thread actually goes through
an intermediate transition state. It is common to say that the thread wakes up.

• There is no way for a program to determine the state of another thread (of course,
a thread, if it is running, must be in the running state, so it would be meaningless
for a thread to find its own state). Even if there were, the state might change be-
fore the inquiring thread would be able to act on the information.

• A thread, regardless of its state, can be suspended, and a ready thread will not
be run if it is suspended. If a running thread is suspended, either by itself or
by a thread on a different processor, it is placed in the ready state.

• A thread is in the terminated state after it terminates and remains there as
long as there are any open handles on the thread. This arrangement allows
other threads to interrogate the thread’s state and exit code.

Pitfalls and Common Mistakes

There are several factors to keep in mind as you develop threaded programs; lack of
attention to a few basic principles can result in serious defects, and it is best to avoid
the problems in the first place than try to find them during testing or debugging.

The essential factor is that the threads execute asynchronously. There is no
sequencing unless you create it explicitly. This asynchronous behavior is what
makes threads so useful, but without proper care, serious difficulties can occur.

Here are a few guidelines; there are more in later chapters. The example pro-
grams attempt to adhere to all these guidelines. There may be a few inadvertent
violations, however, which illustrates the multithreaded programming challenges.

• Make no assumptions about the order in which the parent and child threads
execute. It is possible for a child thread to run to completion before the parent
returns from , or, conversely, the child thread may not run at
all for a considerable period of time. On a multiprocessor computer, the parent
and one or more children may even run concurrently.

• Ensure that all initialization required by the child is complete before the
 call, or else use thread suspension or some other technique.

Failure by the parent to initialize data required by the child is a common
cause of “race conditions” wherein the parent “races” the child to initialize
data before the child needs it. illustrates this principle.

ptg

252 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

• Be certain that each distinct child has its own data structure passed through
the thread function’s parameter. Do not assume that one child thread will
complete before another (this is another form of race condition).

• Any thread, at any time, can be preempted, and any thread, at any time, may
resume execution.

• Do not use thread priority as a substitute for explicit synchronization.

• Do not use reasoning such as “that will hardly ever happen” as an argument
that a program is correct. If it can happen, it will, possibly at a very
embarrassing moment.

• Even more so than with single-threaded programs, testing is necessary, but not
sufficient, to ensure program correctness. It is common for a multithreaded
program to pass extensive tests despite code defects. There is no substitute for
careful design, implementation, and code inspection.

• Threaded program behavior varies widely with processor speed, number of
processors, OS version, and more. Testing on a variety of systems can isolate
numerous defects, but the preceding precaution still applies.

• Be certain that threads have a sufficiently large stack, although the default
1MB is usually sufficient.

• Threads should be used only as appropriate. Thus, if there are activities that
are naturally concurrent, each such activity can be represented by a thread. If,
on the other hand, the activities are naturally sequential, threads only add
complexity and performance overhead.

• If you use a large number of threads, be careful, as the numerous stacks will
consume virtual memory space and thread context switching may become ex-
pensive. “Large” is a relative term and could mean hundreds or thousands. In
other cases, it could mean more threads than the number of processors.

• Fortunately, correct programs are frequently the simplest and have the most
elegant designs. Avoid complexity wherever possible.

Timed Waits

The final function, , allows a thread to give up the processor and move from
the running to the wait state for a specified period of time. A thread can, for
example, perform a task periodically by sleeping after carrying out the task. Once
the time period is over, the scheduler moves the thread back to the ready state. A
program in Chapter 11 (Program 11–4) uses this technique.

ptg

F I B E R S 253

The time period is in milliseconds and can even be , in which case
the thread will never resume. A value will cause the thread to relinquish the re-
mainder of the time slice; the kernel moves the thread from the running state to
the ready state (Figure 7–4).

The function provides another way for a thread to yield its
processor to another ready thread if there is one that is ready to run.

The UNIX function is similar to , but time periods are measured in
seconds. To obtain millisecond resolution, use the or functions with
no file descriptors.

Fibers

Note: Fibers are of specialized interest. See the comment after the first bulleted item
below to determine if you want to skip this section.

A fiber, as the name implies, is a piece of a thread. More precisely, a fiber is a
unit of execution that can be scheduled by the application rather than by the ker-
nel. An application can create numerous fibers, and the fibers themselves deter-
mine which fiber will execute next. The fibers have independent stacks but
otherwise run entirely in the context of the thread on which they are scheduled,
having access, for example, to the thread’s TLS and any mutexes4 owned by the
thread. Furthermore, fiber management occurs entirely in user space outside the
kernel. Fibers can be thought of as lightweight threads, although there are nu-
merous differences.

A fiber can execute on any thread, but never on two at one time. Therefore, a
fiber should not access thread-specific data, such as TLS, as the data will have no
meaning if the fiber is later rescheduled to run on another thread.

Fibers can be used for several purposes.

• Most importantly, many applications, especially some written for UNIX using
proprietary thread implementations, now generally obsolete, are written to
schedule their own threads. Fibers make it easier to port such applications to
Windows but otherwise do not provide advantages over properly used threads.
Most readers will not have such requirements and may want to skip this section.

4 A mutex, as explained in Chapter 8, is a synchronization object that threads can own.

ptg

254 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

• A fiber does not need to block waiting for a file lock, mutex, named pipe input, or
other resource. Rather, one fiber can poll the resource and, if the resource is not
available, switch control to another specific fiber.

• Fibers operate as part of a converted thread (see the first numbered item below)
and have access to thread and process resources. A fiber is not, however, bound to
a specific thread and can run on any thread (but not on more than one at a time).

• Unlike threads, fibers are not preemptively scheduled. The Windows executive,
in fact, is not aware of fibers; fibers are managed within the fiber DLL entirely
within user space.

• Fibers allow you to implement co-routines, whereby an application switches
among several interrelated tasks. Threads do not allow this. The programmer
has no direct control over which thread will be executed next.

• Major software vendors have used fibers and claim performance advantages.
For example, Oracle Database 10g has an optional “fiber mode” (see http://
download.oracle.com/owsf_2003/40171_colello.ppt; this presentation also
describes the threading model).

Seven functions make up the fiber API. They are used in the following
sequence and as shown in Figure 7–5.

1. A thread must first enable fiber operation by calling
 or . The thread then consists of a single fi-

ber. This call provides a pointer to fiber data, which can be used in much the
same way that the thread argument was used to create unique data for a
thread.

2. The application can create additional fibers using . Each fiber
has a start address, a stack size, and a parameter. Each new fiber is identified
by an address rather than by a handle.

3. An individual fiber can obtain its data, as received from , by
calling .

4. Similarly, a fiber can obtain its identity with .

5. A running fiber yields control to another fiber by calling ,
indicating the address of the other fiber. Fibers must explicitly indicate the
next fiber that is to run within the thread.

6. The function deletes an existing fiber and all its associated
data.

http://download.oracle.com/owsf_2003/40171_colello.ppt
http://download.oracle.com/owsf_2003/40171_colello.ppt

ptg

F I B E R S 255

7. New functions, such as (which releases resources
created by), have been added to XP (NT 5.1), along
with fiber local storage.

Figure 7–5 shows fibers in a thread. This example shows two ways in which
fibers schedule each other.

• Master-slave scheduling. One fiber decides which fiber to run, and that
fiber always yields control to the master fiber. Fiber 1 in Figure 7–5 behaves
in this way. The Examples file contains , a variation, that uses
master-slave scheduling.

• Peer-to-peer scheduling. A fiber determines the next fiber to run. The
determination can be based on policies such as round-robin scheduling,
priority scheduling based on a priority scheme, and so on. Co-routines would
be implemented with peer-to-peer scheduling. In Figure 7–5, Fibers 0 and 2
switch control in this way.

Figure 7–5 Control Flow among Fibers in a Thread

Stack Stack

Stack

ConvertThreadToFiber
for (i = 0; i < N; i++)

fA [i] = CreateFiber ();
SwitchToFiber (fA [0])
SwitchToFiber (fA [2]);

GetFiberData
·
·
·

SwitchToFiber (fA [1])
·
·
·

SwitchToFiber (fA [2])
·
·
·

GetFiberData
·
·
·

SwitchToFiber (Primary)

GetFiberData
·
·
·

SwitchToFiber (fA [0])
·
·
·

ExitThread

Fiber 0 Fiber 1

Fiber 2

1

2

3

4

5

6

ptg

256 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

Summary

Windows supports threads that are independently scheduled but share the same
process address space and resources. Threads give the programmer an opportu-
nity to simplify program design and to exploit parallelism in the application to
improve performance. Threads can even yield performance benefits on single-
processor systems. Fibers are units of execution that the program, rather than the
Windows executive, schedules for execution.

Looking Ahead

Chapter 8 describes and compares the Windows synchronization objects, and
Chapters 9 and 10 continue with more advanced synchronization topics, perfor-
mance comparisons, and extended examples. Chapter 11 implements the
threaded server shown in Figure 7–1.

Additional Reading

Windows

Multithreading Applications in Win32, by Jim Beveridge and Robert Wiener, is an
entire book devoted to Win32 threads.

UNIX and Pthreads

Both Advanced Programming in the UNIX Environment, by W. Richard Stevens
and Stephen A. Rago, and Programming with POSIX Threads, by David Buten-
hof, are recommended. The second book provides numerous guidelines for
threaded program design and implementation. The information applies to Win-
dows as well as to Pthreads, and many of the examples can be easily ported to
Windows. There is also good coverage of the boss/worker, client/server, and pipe-
line threading models, and Butenhof ’s presentation is the basis for the model de-
scriptions in this chapter.

Exercises

7–1. Implement a set of functions that will suspend and resume threads but also
allow you to obtain a thread’s suspend count.

ptg

E X E R C I S E S 257

7–2. Compare the performance of the parallel word count programs, one using
threads () and the other using processes (similar to Program 6–
1,). Compare the results with those in Appendix C.

7–3. Perform additional performance studies with where the files are on
different disk drives or are networked files. Also determine the performance
gain on as many multiprocessor systems as are available.

7–4. Modify , Program 7–1, so that it puts out the results in the same
order as that of the files on the command line. Does this affect the
performance measurements in any way?

7–5. Further enhance , Program 7–1, so that it prints the time required
by each worker thread. will be useful, and this function
is similar to (Chapter 6).

7–6. The Examples file includes a multithreaded word count program, ,
that has a structure similar to that of . A defective version,

, is also included. Without referring to the correct solution, analyze
and fix the defects in , including any syntax errors. Also, create
test cases that illustrate these defects and carry out performance
experiments similar to those suggested for . If you use Cygwin (open
source UNIX/Linux commands and shells), compare the performance of
Cygwin’s with that of , especially on multiprocessor systems.

7–7. The Examples file includes , which is defective because it
violates basic rules for thread safety. Describe the failure symptoms,
identify the errors, and fix them.

7–8. requires that the number of records in the array to be sorted be
divisible by the number of threads and that the number of threads be a
power of 2. Remove these restrictions.

7–9. Enhance so that if the number of threads specified on the command
line is zero, the program will determine the number of processors on the
host computer using . Set the number of threads to differ-
ent multiples (1, 2, 4, and so on) of the number of processors and determine
the effect on performance.

7–10. Modify so that the worker threads are not suspended when they are
created. What failure symptoms, if any, does the program demonstrate as a
result of the race condition defect?

7–11. reads the entire file in the primary thread before creating the
sorting threads. Modify the program so that each thread reads the portion
of the file that it requires. Next, modify the program to use mapped files.

ptg

258 C H A P T E R 7 T H R E A D S A N D S C H E D U L I N G

7–12. Is there any performance benefit if you give some of the threads in
higher priority than others? For example, it might be beneficial to give the
threads that only sort and do not merge, such as Thread 3 in Figure 7–2, a
higher priority. Explain the results.

7–13. creates all the threads in a suspended state so as to avoid a race
condition. Modify the program so that it creates the threads in reverse order
and in a running state. Are there any remaining race conditions? Compare
performance with the original version.

7–14. Quicksort, the algorithm generally used by the C library function, is
usually fast, but it can be slow in certain cases. Most texts on algorithms
show a version that is fastest when the array is reverse sorted and slowest
when it is already sorted. The Microsoft C library implementation is
different. Determine from the library code which sequences will produce the
best and worst behavior, and study ’s performance in these extreme
cases. What is the effect of increasing or decreasing the number of threads?
Note: The C library source code can be installed in the directory under
your Visual Studio installation. Look for .

7–15. The Examples file contains a defective program. Demonstrate
the defects with test cases and then explain and fix the defects without
reference to the correct solutions. Caution: The defective version may have
syntax errors as well as errors in the thread logic.

7–16. One of the technical reviewers suggested an interesting enhance-
ment that may provide improved performance. The idea is to modify the

 function so that it does not need to allocate the destination
record storage. Instead, preallocate a second array as large as the array be-
ing sorted. Each worker thread can then use the appropriate portion of the
preallocated array. Finally, eliminate the at the end. Hint: Alter-
nate the merge direction on even and odd passes. Compare the resulting
performance to Runs 7–2a and 7–2b.

ptg

259

C H A P T E R

8 Thread
Synchronization

Threads can simplify program design and implementation and also improve
performance, but thread usage requires care to ensure that shared resources are
protected against simultaneous modification and that threads run only when
appropriate. This chapter shows how to use Windows synchronization objects—

s, mutexes, semaphores, and events1—to solve these
problems and describes some of the problems, such as deadlocks and race
conditions, that can occur with improper synchronization object use. Some
synchronization objects can be used to synchronize threads in the same process or
in separate processes.

The examples illustrate the synchronization objects and discuss the
performance impacts, both positive and negative, of different synchronization
methods. The following chapters then show how to use synchronization to solve
additional programming problems, improve performance, avoid pitfalls, and use
more advanced NT6 features, such as “slim reader/writer” (SRW) locks and
Windows condition variables.

Thread synchronization is a fundamental and interesting topic, and it is
essential in nearly all threaded applications. Nonetheless, readers who are
primarily interested in interprocess communication, network programming, and
building threaded servers might want to skip to Chapter 11.

The Need for Thread Synchronization

Chapter 7 showed how to create and manage worker threads, where each worker
thread accesses its own resources and runs to completion without interacting with
other threads. Each thread in the Chapter 7 examples processes a separate file or a
separate storage area, yet simple synchronization during thread creation and
termination is still necessary. For example, the worker threads all run

1 The last three are Windows kernel objects referenced with s. The first is not a kernel object.

ptg

260 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

independently of one another, but the boss thread must wait for the workers to
complete before reporting the results the worker threads generated. Notice that the
boss shares memory with the workers, but the program design assures that the boss
will not access the memory until the worker terminates. This design enables the
parallelism described in Chapter 7.

 is slightly more complicated because the workers need to synchronize
by waiting for adjacent workers to complete, and the worker threads are not
allowed to start until the boss thread has created all the workers. As with

, synchronization consists of waiting for one or more threads to terminate.
In many cases, however, it is necessary for two or more threads to coordinate

execution throughout each thread’s lifetime. For instance, several threads may share
data, and this raises the issue of mutual exclusion. In other cases, a thread cannot
proceed until another thread reaches a designated point. How can the programmer
assume that two or more threads do not, for example, simultaneously modify the
same global storage, such as the performance statistics? Furthermore, how can the
programmer ensure that a thread does not attempt to remove an element from a
queue before there are any elements in the queue or that two threads do not attempt
to remove the same element?

Several examples illustrate situations that can prevent code from being
thread-safe. (Code is thread-safe if several threads can execute the code simul-
taneously without any undesirable results.) Thread safety is discussed later in
this and the following chapters.

Figure 8–1 shows what can happen when two unsynchronized threads share a
resource such as a memory location. Both threads increment variable , but,
because of the particular sequence in which the threads might execute, the final
value of is , whereas the correct value is . Notice that the particular result
shown here is not predictable; a different thread execution sequence could yield the
correct results. Execution on a multiprocessor computer can aggravate this
problem.

Critical Code Regions

Incrementing with a single statement such as is no better because the
compiler will generate a sequence of one or more machine-level instructions that
are not necessarily executed atomically as a single unit.

The core problem is that there is a critical code region2 (the code that
increments in this example) such that, once a thread starts to execute the
critical region, no other thread can be allowed to enter until the first thread exits

2 The term “critical code section” is common but can cause confusion with Windows
 objects, which, while related to critical code regions (or sections), are not the

same thing.

ptg

T H E N E E D F O R T H R E A D S Y N C H R O N I Z A T I O N 261

from the code region. This critical code region problem can be considered a type of
race condition because the first thread “races” to complete the critical region
before any other thread starts to execute the same critical code region. Thus, we
need to synchronize thread execution in order to ensure that only one thread at a
time executes the critical region.

There can be more than one critical code region for a variable, such as in
Figure 8–1. Typically, there might be a critical code region that decrements .
Generalizing, we need to synchronize thread execution in order to ensure that
only one thread at a time executes any of the critical regions for a data item. We
need to avoid problems such as having one thread increment while another is
decrementing it.

Defective Solutions to the Critical Code Region Problem

Similarly unpredictable results will occur with a code sequence that attempts to
protect the increment with a global polled flag (in this case, the variable).

Figure 8–1 Unsynchronized Threads Sharing Memory

M

4
5

4
5

M = N;
M = M + 1;

Running

N = M;

Running

···

Ready

N

4

5

5

Ready

M = N;
M = M + 1;
N = M;

Running

Ready

···

Thread 1 Thread 2

ptg

262 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

Even in this case, the thread could be preempted between the time is
tested and the time is set to ; the first two statements form a critical
code region that is not properly protected from concurrent access by two or more
threads.

Another attempted solution to the critical code region synchronization prob-
lem might be to give each thread its own copy of the variable , as follows:

This approach is no better, however, because each thread has its own copy of
the variable on its stack, where it may have been required to have represent, for
example, the total number of threads in operation. Such a solution is necessary,
however, in the common case in which each thread needs its own distinct copy of
the variable and the increment is not a critical code region.

Notice that such problems are not limited to threads within a single process.
They can also occur if two processes share mapped memory or modify the same file.

Storage

Yet another latent defect exists even after we solve the synchronization problem.
An optimizing compiler might leave the value of in a register rather than storing
it back in . An attempt to solve this problem by resetting compiler optimization
switches would impact performance throughout the code. The correct solution is to
use the ANSI C storage qualifier, which ensures that the variable will
be stored in memory after modification and will always be fetched from memory
before use. The qualifier informs the compiler that the variable can

ptg

T H E N E E D F O R T H R E A D S Y N C H R O N I Z A T I O N 263

change value at any time. Be aware, however, that the qualifier can
negatively affect performance, so use it only as required.

As a simple guideline, use for any variable that is accessed by con-
current threads and is:

• Modified by at least one thread, and

• Accessed, even if read-only, by two or more threads, and correct program oper-
ation depends on the new value being visible to all threads immediately

This guideline is overly cautious; Program 8–1 shows a situation where the vari-
able meeting these guidelines does not necessarily need to be . If a mod-
ifying thread returns from or calls another function after modifying the variable,
the variable will not be held in a register.

There is another situation where you need to use ; the parameters
to the “interlocked functions,” described soon, require variables.

Memory Architecture and Memory Barriers

Even the modifier does not assure that changes are visible to other pro-
cessors in a specific order, because a processor might hold the value in cache be-
fore committing it to main memory and alter the order in which different
processes see the changed values. To assure that changes are visible to other pro-
cessors in the desired order, use memory barriers (or “fences”); the interlocked
functions (next section) provide a memory barrier, as do all the synchronization
functions in this chapter.

To help clarify this complex issue, Figure 8–2 shows the memory subsystem
architecture of a typical multiprocessor computer. In this case, the computer has
four processors on two dual-core chips and is similar to the computer used with
many of the “run” screenshots in this chapter and Chapter 7.

The components are listed here, along with representative values3 for total
size, line size (that is, the number of bytes in a single chunk), and latency (access)
times in processor cycles:

• The four processor cores, which include the registers that hold computed val-
ues as well as values loaded from memory.

• Level 1 (L1) cache. The instruction and data caches are usually separate, and
each processor core has a distinct cache. When you modify a vari-

3 See the chip manufacturer’s specifications for actual values and architectural details. The informa-
tion here is similar to that of the Intel Core 2 Quad processor.

ptg

264 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

able, the new value will be stored in the core’s L1 data cache but won’t neces-
sarily be stored in the L2 cache or main memory. Size: 32KB, Line Size: 64
bytes, Latency: 3 cycles.

• Level 2 (L2) cache. Each processor chip has its own L2 cache, shared by the
two cores. Size: 6MB, Line Size: 64 bytes, Latency: 14 cycles.

• Main Memory, which is shared by all processor cores and is not part of the
processor chips. Size: Multiple GB, Line Size: N/A, Latency: 100+ cycles.

Figure 8–2 represents the most common “symmetric multiprocessing” (SMP)
shared memory architecture, although the processors are not entirely symmetric be-
cause of the L2 cache. Nonuniform memory access (NUMA) is more complex because
the main memory is partitioned among the processors; NUMA is not coverd here.

Figure 8–2 shows that only assures that the new data value will be
in the L1 cache; there is no assurance that the new value will be visible to threads
running on other cores. A memory barrier, however, assures that the value is moved
to main memory. Furthermore, the barrier assures cache coherence. Thus, if Core 0
updates variable at a memory barrier, and Core 3’s L1 cache has a value repre-
senting , the value in Core 3’s L1 (and L2) cache is either updated or removed so
that the new value is visible to Core 3 and all other cores concurrently.

There is a performance cost, however, as moving data between main memory,
processor cores, and caches can require hundreds of cycles, whereas a pipelined
processor can access register values in less than a cycle.

Figure 8–2 Memory System Architecture

Core 0 Core 1 Core 2 Core 3

L1
Inst

L1
Data

L1
Inst

L1
Data

L1
Inst

L1
Data

L1
Inst

L1
Data

L2 Cache

Main Memory

Processor Chip 0 Processor Chip 1

L2 Cache

ptg

T H E N E E D F O R T H R E A D S Y N C H R O N I Z A T I O N 265

Figure 8–2 also shows that it’s important to assure that shared variables are
aligned on their natural boundaries. If, for example, a were
aligned on a 4-byte (but not 8-byte) boundary, it might also cross a cache line
boundary. It would then be possible that only part of the new value would become
visible to other processors, resulting in a “word tear” bug. By default, most compil-
ers align data items on their natural boundaries.

Interlocked Functions: Introduction

If all we need is to increment, decrement, or exchange variables, as in this simple
initial example, then the interlocked functions will suffice, and the variables need
to be . The interlocked functions are simpler and faster than any of the
alternatives, although they do generate a memory barrier with the performance
impact described previously.

The first two members of the interlocked function family are
 and ; other interlocked functions are de-

scribed in a later section. These two instructions apply to 32-bit signed integers
(the “Addend,” which must be aligned on a 4-byte boundary to assure correct oper-
ation) and return the resulting value.

These functions have limited utility, but they should be used wherever possi-
ble to simplify code and improve performance.

Use and to incre-
ment and decrement 64-bit values, but be sure that the is aligned on a 64-
bit (8-byte) boundary.

If your code will run on processors that support “acquire” and “release” seman-
tics, such as the Itanium (but not Intel x86 and x64), you could use

 and to gain performance.
See MSDN for more information.

ptg

266 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

The task of incrementing in Figure 8–1 can be implemented with a single
line:

 is a signed integer, and the function returns its new value, al-
though another thread could modify ’s value before the thread that called

 can use the returned value.
Be careful, however, not to call this function twice in succession if, for

example, you need to increment the variable by 2 and correct program operation
depends on the variable being even. The thread might be preempted between the
two calls. Instead, use the function described near
the end of the chapter.

Local and Global Storage

Another requirement for correct thread code is that global storage not be used for
local purposes. For example, the earlier example would be necessary
and appropriate if each thread required its own separate copy of . might hold
temporary results or retain the argument. If, however, represents thread-
specific data and were placed in global storage, all threads would share a single
copy of , resulting in incorrect behavior no matter how well your program syn-
chronized access.

Here is an example of such incorrect usage, which often occurs when convert-
ing a legacy single-threaded program to multithreaded operation and using a
function (, in this case) as a thread function. should be a local vari-
able, allocated on the thread function’s stack as its value is used within the func-
tion.

Comment: Finding and removing global variables, such as in this fragment, is
a major challenge when converting legacy, single-threaded programs to use threads.
In the code fragment above, the function was called sequentially, and, in the multi-

ptg

T H E N E E D F O R T H R E A D S Y N C H R O N I Z A T I O N 267

threaded version, several threads can be executing the function concurrently. The
problem is also challenging when we have a situation such as the following legacy
code fragment, where results are accumulated in the global variable:

The challenge occurs when converting to a thread function executed
by two or more threads running in parallel. This and the following chapters deal
with many similar situations.

Summary: Thread-Safe Code

Before proceeding to the synchronization objects, here are five initial guidelines to
help ensure that the code will run correctly in a threaded environment.

1. Variables that are local to the thread should not be global and should be on
the thread’s stack or in a data structure or TLS that only the individual
thread can access directly.

2. If a function is called by several threads and a thread-specific state value,
such as a counter, is to persist from one function call to the next, do not store
it in a global variable or structure. Instead, store the state value in TLS or in a
data structure dedicated to that thread, such as the data structure passed to
the thread when it is created. Programs 12–5 and 12–6 show the required
techniques when building thread-safe DLLs.

3. Avoid race conditions such as the uninitialized variables that would occur in
Program 7–2 () if the threads were not created in a suspended state. If
some condition is assumed to hold at a specific point in the program, wait on a
synchronization object to ensure that the condition does hold.

ptg

268 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

4. Threads should not, in general, change the process environment because that
would affect all threads. Thus, a thread should not set the standard input or
output handles or change environment variables. An exception would be the
primary thread, which might make such changes before creating any other
threads. In this case, all threads would share the same environment, since the
primary thread can assure that there are no other threads in the process at
the time the environment is changed.

5. Variables shared by all threads should be static or in global storage and pro-
tected with the synchronization or interlocked mechanisms that create a
memory barrier.

The next section discusses the synchronization objects. With that discussion,
there will be enough to develop a simple producer/consumer example.

Thread Synchronization Objects

Two mechanisms discussed so far allow processes and threads to synchronize with
one another.

1. A thread can wait for another process to terminate by waiting on the process
handle with or . A thread
can wait for another thread to terminate, regardless of how the thread termi-
nates, in the same way.

2. File locks are specifically for synchronizing file access.

Windows NT5 and NT6 provide four other objects designed for thread and pro-
cess synchronization. Three of these objects—mutexes, semaphores, and events—
are kernel objects that have handles. Events are also used for other purposes,
such as asynchronous I/O (Chapter 14).

The fourth object, the , is discussed first. Because of their
simplicity and performance advantages, s are the preferred
mechanism when they are adequate for a program’s requirements.

Caution: There are risks inherent to the use of synchronization objects if they
are not used properly. These risks, such as deadlocks, are described in this and
subsequent chapters, along with techniques for developing reliable code. First,
however, we’ll show some synchronization examples in realistic situations.

New in Windows Vista and Windows Server 2008: Windows kernel 6 (NT 6) in-
troduced SRW locks (see Chapter 9) and condition variables (see Chapter 10),
which are welcome additions. However, at the time of writing, most applications
will need to support Windows XP. This situation may change in the future.

ptg

 O B J E C T S 269

Two other synchronization objects, waitable timers and I/O completion ports,
are deferred until we’ve described the prerequisite asynchronous I/O techniques
in Chapter 14.

 Objects

A critical code region, as described earlier, is a code region that only one thread
can execute at a time; more than one thread executing the critical code region con-
currently can result in unpredictable and incorrect results.

Windows provides the object as a simple “lock” mecha-
nism for implementing and enforcing the critical code region concept.

 (CS) objects are initialized and deleted but do not have
handles and are not shared with other processes. Declare a CS variable as a

. Threads enter and leave a CS, and only one thread at a time
can be in a specific CS. A thread can, however, enter and leave a specific CS at
multiple points in the program.

To initialize and delete a variable and its resources, use
 and , respectively.

You cannot perform any operations on a CS before initializing it or after deleting
it, although you can reinitialize a CS.

 blocks a thread if another thread is in the section,
and multiple threads can wait simultaneously on the same CS. One waiting thread
unblocks when another thread executes ; you cannot pre-
dict which waiting thread will unblock.

We say that a thread owns the CS once it returns from
, and relinquishes ownership. Always be certain

to leave a CS; failure to do so will cause other threads to wait forever, even if the own-
ing thread terminates. The examples use blocks to leave CSs.

ptg

270 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

We will often say that a CS is locked or unlocked, and entering a CS is the
same as locking the CS.

If a thread already owns the CS, it can enter again without blocking; that is,
s are recursive. Windows maintains a count so that the

thread must leave as many times as it enters in order to unlock the CS for other
threads. This capability can be useful in implementing recursive functions and
making shared library functions thread-safe.

Leaving a CS that a thread does not own can produce unpredictable results,
including thread blockage.

There is no time-out from ; a thread will block for-
ever if the owning thread never leaves the CS. You can, however, test or poll to see
whether another thread owns a CS using .

A return value from indicates that the
calling thread now owns the CS. A return indicates that some other thread
already owns the CS, and it is not safe to execute the critical code region.

s have the advantage of not being kernel objects and are
maintained in user space. This almost a lways provides performance
improvements compared to using a Windows mutex kernel object with similar
functionality, especially in NT5 and later (and this book assumes you are using
NT5 or NT6). We will discuss the performance benefit after introducing kernel
synchronization objects.

ptg

A F O R P R O T E C T I N G S H A R E D V A R I A B L E S 271

Adjusting the Spin Count

Normally, if a thread finds that a CS is already owned when executing
, it enters the kernel and blocks until the

is released, which is time consuming. On multiprocessor systems, however, you
can require that the thread try again (that is, spin) before blocking, as the owning
thread may be running on a separate processor and could release the CS at any
time. This can be useful for performance when there is high contention among
threads for a single that is never held for more than a few in-
structions. Performance implications are discussed later in this chapter and the
next.

The two functions to adjust spin count are ,
which allows you to adjust the count dynamically, and

, which is a substitute for
. Spin count tuning is a topic in Chapter 9.

A for Protecting Shared Variables

Using s is simple, and one common use is to allow threads to
access global shared variables. For example, consider a threaded server (as in
Figure 7–1) in which there might be a need to maintain usage statistics such as:

• The total number of requests received

• The total number of responses sent

• The number of requests currently being processed by server threads

Because the count variables are global to the process, two threads must not
modify the counts simultaneously. objects provide one means
of ensuring this, as shown by the code sequence below and in Figure 8–3. Program
8–1, much simpler than the server system, illustrates this
usage.

CSs can be used to solve problems such as the one shown in Figure 8–1, in
which two threads increment the same variable. The following code segment will
do more than increment the variable because simple incrementing is possible with
the interlocked functions. This example also uses an intermediate variable; this
unnecessary inefficiency more clearly illustrates the solution to the problem in
Figure 8–1.

ptg

272 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

Figure 8–3 shows one possible execution sequence for the Figure 8–1 example and
illustrates how CSs solve the critical code region synchronization problem.

Figure 8–3 Synchronized Threads Sharing Memory

M

4
5

5

6

EntCritSec(&cs1);
M = N;
M = M + 1;

Running

N = M;
LeaveCritSec(&cs1)

Running

···

Ready

N

4

5

6

Ready

Running

Running

···

Thread 1 Thread 2

EntCritSec(&cs1)

Blocked

M = N;
M = M + 1;
N = M;

LeaveCritSec(&cs1)

ptg

E X A M P L E : A S I M P L E P R O D U C E R / C O N S U M E R S Y S T E M 273

Protect a Variable with a Single Synchronization Object

Each variable, or collection of variables, that is accessed in a critical code section
should be guarded by the same CS (or other synchronization object) everywhere.
Otherwise, two threads could still modify the variable concurrently. For example,
the following thread function, which uses two CS and interlocked functions, is de-
fective (is, as before, a global , and and are global
CSs).

Example: A Simple Producer/Consumer System

Program 8–1 shows how CS lock objects can be useful. The program also shows
how to build protected data structures for storing object state and introduces the
concept of an invariant, which is a property of an object’s state that is guaranteed
(by the proper program implementation) to be true outside a critical code region.
Here is a description of the problem.

• There are two threads in addition to the primary thread, a producer and a
consumer, that act entirely asynchronously.

• The producer periodically creates messages containing a table of numbers,
such as current stock prices, periodically updating the table.

• The consumer, on request from the user, displays the current data. The
requirement is that the displayed data must be the most recent complete set of
data, but no data should be displayed twice.

ptg

274 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

• Do not display data while the producer is updating it, and do not display old
data. Note that, by design, many produced messages are never used and are
“lost.” This example is a special case of the pipeline model in which data
moves from one thread to the next.

• As an integrity check, the producer also computes a simple checksum4 of the
data in the table, and the consumer validates the checksum to ensure that the
data has not been corrupted in transmission from one thread to the next. If
the consumer accesses the table while it is still being updated, the table will
be invalid; the CS ensures that this does not happen. The message block
invariant is that the checksum is correct for the current message contents.

• The two threads also maintain statistics on the total number of messages pro-
duced, consumed, and lost.

The final output (see Run 8–1 after Program 8–1) shows the actual number com-
puted at stop time, since the number computed after a consume command is proba-
bly stale. Additional comments follow the program listing and the run screenshot.

Program 8–1 A Simple Producer and Consumer

4 This checksum, an “exclusive or” of the message bits, is for illustration only. Much more sophisticated
message digest techniques are available for use in production applications.

ptg

E X A M P L E : A S I M P L E P R O D U C E R / C O N S U M E R S Y S T E M 275

ptg

276 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

ptg

E X A M P L E : A S I M P L E P R O D U C E R / C O N S U M E R S Y S T E M 277

Run 8–1 shows four consumed messages. You can estimate the time between
consume commands from the message time stamp and the message number.

Run 8–1 Periodic Messages, Consumed on Demand

ptg

278 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

Comments on the Simple Producer/Consumer Example

This example illustrates several points and programming conventions that are
important throughout this and the following chapters.

• The object is a part of the object (the message block) that
it protects.

• Every access to the message block is performed in a critical code region, with
one exception described next.

• When the thread receives a stop command, it sets the message
block’s stop flag. There is no need to use the message’s CS, because the new
value does not depend on the old flag value (there is no “read/modify/write”),
and the compiler will store the value when returns. Furthermore,
only one thread modifies the stop flag, which is not .

• The producer thread only knows that it should stop by examining a flag in the
message block, where the flag is set by the consumer. Because one thread cannot
send any sort of signal to another and has undesirable side
effects, this technique is the simplest way to stop another thread. The threads
must cooperate for this method to be effective. This solution requires, however,
that the thread must not be blocked so that it can test the flag; Chapter 10 shows
how to cancel a blocked thread.

• Any variable that is accessed and modified with interlocked instructions is
. and are not because the CS enter

and leave statements create memory barriers assuring that the consumer’s
changes are visible to the producer.

• Termination handlers ensure that the CS is released. This technique helps to
ensure that later code modifications do not inadvertently skip the

 call. It is important, however, that the statement is
immediately after the so that there is no possibility
of an exception or other transfer of control between the call to

 and the block.

• The and functions are called only within
critical code regions, and both functions use local rather than global storage
for their computations. Incidentally, these two functions are useful in
subsequent examples; there is no need to list them again.

• The producer does not have a useful way to tell the consumer that there is a
new message, so the consumer simply has to wait until the ready flag,
indicating a new message, is set. Event kernel objects will give us a way to
eliminate this inefficiency.

ptg

M U T E X E S 279

• One of the invariant properties that this program ensures is that the message
block checksum is always correct, outside the critical code regions. Another in-
variant property is:

The object is a powerful synchronization mechanism, yet
it does not provide all the functionality needed. The inability to signal another
thread was noted earlier, and there is also no time-out capability. The Windows
kernel synchronization objects address these limitations and more.

Mutexes

A mutex (“mutual exclusion”) object provides locking functionality beyond that of
s. Because mutexes can be named and have handles, they

can also be used for interprocess synchronization between threads in separate
processes. For example, two processes that share memory by means of memory-
mapped files can use mutexes to synchronize access to the shared memory.

Mutex objects are similar to CSs, but in addition to being process-sharable,
mutexes allow time-out values and become signaled when abandoned by a termi-
nating thread.5 A thread gains mutex ownership (or locks the mutex) by success-
fully waiting on the mutex handle (or

), and it releases ownership with .
As always, threads should be careful to release resources they own as soon as

possible. A thread can acquire a specific mutex several times; the thread will not
block if it already has ownership. Ultimately, it must release the mutex the same
number of times. This recursive ownership feature, also available with CSs, can
be useful for restricting access to a recursive function or in an application that
implements nested transactions.

Windows functions are , , and .

5 As a rule of thumb, use a if the limitations are acceptable, and use mutexes
when you have more than one process or need some other mutex capability. Also, CSs are nearly al-
ways much faster. This topic is discussed in detail in Chapter 9, which also describes the more efficient
NT6 SRW locks.

ptg

280 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

Parameters

• The flag, if , gives the calling thread immediate owner-
ship of the new mutex. This flag is ignored if the mutex already exists, as de-
termined by the name.

• indicates the mutex name; unlike files, mutex names are case-
sensitive. The mutexes are unnamed if the parameter is . Events, mu-
texes, semaphores, file mapping, and other kernel objects used in this book all
share the same name space, which is distinct from the file system name space.
Therefore, all named synchronization objects should have distinct names.
These names are limited to 260 characters.

• A return value indicates failure.

Windows Vista and Server 2008 (NT 6) also provide , which
has an extra parameter that specifies the same secu-
rity and access rights values, with the same meanings, as used in the optional se-
curity attributes structure (the parameter values do not need to be identical). One
possible value is , which would normally be used only by an
administrator. changes the parameter order and replaces

 with with only one possible non-zero value. See
MSDN for additional information.

 is for opening an existing named mutex. This function is not
discussed further but is used in some examples. It allows threads in different
processes to synchronize just as if the threads were in the same process. The

 in one process must precede the in another. Semaphores and events
also have and functions, as do file mappings (Chapter 5). The
assumption always is that one process, such as a server, first performs a
call, failing if the named object has already been created. Alternatively, all
processes can use the call with the same name if the order is not
important.

 relinquishes mutex ownership. It fails if the thread does not
own the mutex.

The POSIX Pthreads specification supports mutexes. The four basic functions are
as follows:

ptg

M U T E X E S 281

 will block and is therefore nearly equivalent (there are
some small differences) to when used with a mutex han-
dle. is a nonblocking, polling version that corresponds
to with a zero time-out value. Pthreads do not provide
for a time-out.

The Pthreads is similar to the Windows
.

These functions operate on type variables, which, by default,
are not recursive. However, there is an option to set the recursive attribute.

Abandoned Mutexes

If a thread terminates without releasing a mutex that it owns, the mutex becomes
“abandoned” and the handle is in the signaled state. will
return , and will use

 as the base value to indicate that the signaled handle(s) repre-
sents abandoned mutex(es).

The fact that abandoned mutex handles are signaled is a useful feature not
available with CSs. If an abandoned mutex is detected, there is a strong possibil-
ity of a defect in the thread code or program failure because threads should be pro-
grammed to release their resources before terminating. It is also possible that the
thread was terminated by some other thread.

Mutexes, s, and Deadlocks

Although CSs and mutexes can solve problems such as the one in Figure 8–1, you
must use them carefully to avoid deadlocks, in which two threads become blocked
while each is waiting for a resource owned by the other thread. Incidentally, the
same caution applies to file locking (Chapter 3).

Deadlocks are one of the most common and insidious defects in synchroniza-
tion, and they frequently occur when two or more mutexes must be locked at the
same time. Consider the following problem.

• There are two linked lists, Lists A and B, each containing identical structures
and maintained by worker threads.

ptg

282 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

• For one class of list element, correct operation depends on a given element, X,
being either in both lists or in neither; it is an error if an element of this class
is in just one list. This is an informal statement of the invariant.

• In other situations, an element is allowed to be in one list but not in the other.
Motivation: The lists might be employees in Departments A and B, where
some employees are allowed to be in both departments.

• Therefore, distinct mutexes (or s) are required for both lists,
but both mutexes must be locked when adding or deleting a shared element.
Using a single mutex would degrade performance, prohibiting concurrent
independent updates to the two lists, because the mutex would be “too large.”

Here is a defective implementation of the worker thread functions for adding
and deleting shared list elements.

ptg

M U T E X E S 283

The code may appear to be correct by all the previous guidelines. However, a
preemption of the thread immediately after it locks List A
and immediately before it tries to lock List B will deadlock if the

 thread starts before the add thread resumes. Each thread owns
a mutex the other requires, and neither thread can proceed to the
call that would unblock the other thread.

Notice that deadlocks are really another form of race condition, as one thread
races to acquire all its mutexes before the other thread starts to do so.

One way to avoid deadlock is the “try and back off” strategy, whereby a thread
calls with a finite time-out value and, when detecting an
owned mutex, “backs off” by yielding the processor or sleeping for a brief time
before trying again. Designing for deadlock-free systems is even better and more
efficient, as described next.

A far simpler and superior method, covered in nearly all OS texts, is to specify
a “mutex hierarchy” such that all threads are programmed to assure that they
acquire the mutexes in exactly the same order and release them in the opposite
order. This hierarchical sequence might be arbitrary or could be natural from the
structure of the problem, but, whatever the hierarchy, all threads must observe it.
In this example, all that is needed is for the delete function to wait for Lists A and
B in order, and the threads will never deadlock as long as this hierarchical
sequence is observed everywhere by all threads.

Another technique to reduce deadlock potential is to put the two mutex
handles in an array and use with the flag
set to so that a thread acquires either both or neither of the mutexes in an
atomic operation. This technique assumes that you do not need to acquire the
mutexes sequentially and that acquisition is centralized, so it can be difficult to
use successfully. This technique is not possible with s.

Finally, notice that you could create deadlocks with three or more mutexes; all
that is required is a cyclic dependency among the mutexes.

Review: Mutexes versus s

As stated several times, the two lock objects, mutexes and s,
are very similar and solve the same basic problems. In particular, both objects can
be owned by a single thread, and other threads attempting to gain ownership will
block until the object is released. Mutexes do provide greater flexibility, but with a
performance penalty. In summary, these are the differences:

• Mutexes, when abandoned by a terminated thread, are signaled so that other
threads are not blocked forever. This allows the application to continue execu-
tion, but an abandoned mutex almost certainly indicates a serious program
bug or failure.

ptg

284 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

• Mutex waits can time out, whereas you can only poll a CS.

• Mutexes can be named and are sharable by threads in different processes.

• The thread that creates a mutex can specify immediate ownership. This is
only a slight convenience, as the thread could immediately acquire the mutex
with the next statement.

• CSs are almost always considerably faster than mutexes. There is more on
this in Chapter 9, and Chapter 9’s SRW locks provide an additional, faster op-
tion.

Heap Locking

A pair of functions— and —is available to synchronize
heap access (Chapter 5). The heap handle is the only argument. No other thread
can allocate or free memory from the heap while a thread owns the heap lock.
These functions cannot be used if the heap was created with the

 flag.
Although rarely used, heap locking can assure that no other thread modifies

the heap if, for example, the locking thread is using to examine the
heap for diagnostic purposes.

Semaphores

Semaphores, the second of the three kernel synchronization objects, maintain a
count, and the semaphore object is in the signaled state when the count is greater
than . The semaphore is unsignaled when the count is .

Threads wait in the normal way, using one of the wait functions. When a wait-
ing thread is released, the semaphore’s count is decremented by .

The semaphore functions are , ,
, and . The last function can increment the

count by or more. These functions are comparable to their mutex counterparts.

ptg

S E M A P H O R E S 285

, which must be or greater, is the maximum value for the semaphore.
, with ≤ ≤ , is the initial value, and the

semaphore value is never allowed to go outside of this range. A return value
indicates failure.

You can decrease the count only by with any given wait operation, but a
semaphore release can increment its count by any value up to the maximum.

Notice that you can find the count preceding the release, but the pointer can
be if there is no need for this value.

The release count must be greater than , but if it would cause the semaphore
count to exceed the maximum, the call will fail, returning , and the count
will remain unchanged. Use the previous count value with caution, as other
threads can change the semaphore count. Also, you cannot determine whether the
count is at its maximum because there is no legal release count in that state. An
example in the Examples file code demonstrates using the previous count.

While it is tempting to think of a mutex as a special case of a semaphore with
a maximum value of , this would be misleading because there is no semaphore
ownership. Any thread can release a semaphore, not just the one that performed
the wait. Likewise, since there is no ownership, there is no concept of an aban-
doned semaphore.

Using Semaphores

The classic semaphore application regards the semaphore count as representing the
number of available resources, such as the number of messages waiting in a queue.
The semaphore maximum then represents the maximum queue size. Thus, a pro-
ducer would place a message in the buffer and call , usually
with a release count of . Consumer threads would wait on the semaphore, consum-
ing a message and decrementing the semaphore count.

The potential race condition in (Program 7–2) illustrates another use
of a semaphore to control the exact number of threads to wake up. All the threads
could be created without being suspended. All of them would immediately wait on
a semaphore initialized to . The boss thread, rather than resuming the threads,
would simply call with a count of (or whatever the number
of threads is), and the four threads could then proceed.

ptg

286 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

While semaphores can be convenient, they are redundant in the sense that
mutexes and events (described in the next major section), used together, are more
powerful than semaphores. See Chapter 10 for more information.

A Semaphore Limitation

There is st il l an important l imitat ion with the Windows semaphore
implementation. How can a thread request that the count be decremented by two
or more? The thread can wait twice in succession, as shown below, but this would
not be an atomic operation because the thread could be preempted between waits.
A deadlock could occur, as described next.

To see how a deadlock is possible in this situation, suppose that the maximum
and original semaphore counts are set to and that the first of two threads com-
pletes the first wait and is then preempted. A second thread could then complete
the first wait, reducing the count to . Both threads will block forever because nei-
ther will be able to get past the second wait.

A possible correct solution, shown in the following code fragment, is to protect
the waits with a mutex or .

Even this implementation, in general form, is limited. Suppose, for example,
that the semaphore has two remaining units, and that Thread A needs three units
and Thread B needs just two. If Thread A arrives first, it will complete two waits

ptg

E V E N T S 287

and block on the third while owning the mutex. Thread B, which only needs the
two remaining units, will still be blocked.

Another proposed solution would be to use with
the same semaphore handle used several times in the handle array. This sugges-
tion fails for two reasons. First, will return an error
if it detects two handles for the same object. What is more, the handles would all
be signaled, even if the semaphore count were only , which would defeat the pur-
pose.

Exercise 10–10 provides a complete solution to this multiple-wait problem.
The Windows semaphore design would be more convenient if we could per-

form an atomic multiple-wait operation.

Events

Events are the final kernel synchronization object. Events can signal other
threads to indicate that some condition, such as a message being available, now
holds.

The important additional capability offered by events is that multiple threads
can be released from a wait simultaneously when a single event is signaled.
Events are classified as manual-reset and auto-reset, and this event property is
set by the call.

• A manual-reset event can signal several threads waiting on the event simulta-
neously and can be reset.

• An auto-reset event signals a single thread waiting on the event, and the
event is reset automatically.

Events use six new functions: , , ,
, , and . Here is the definition.

Specify a manual-reset event by setting to . Similarly,
the event is initially set to the signaled state if is . You
open a named event, possibly from another process, with .

ptg

288 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

The following three functions control events:

A thread can signal an event using . If the event is auto-reset, a sin-
gle waiting thread, possibly one of many, is released, and the event automatically
returns to the nonsignaled state. If no threads are waiting on the event, the event
remains in the signaled state until a thread waits on it, and the thread is immedi-
ately released. Notice that a semaphore with a maximum count of would have
the same effect.

If, on the other hand, the event is manual-reset, it remains signaled until a thread
calls for that event. During this time, all waiting threads are released,
and it is possible that other threads will wait, and be released, before the reset.

 releases all threads currently waiting on a manual-reset event,
but the event is then automatically reset. In the case of an auto-reset event,

 releases a single waiting thread, if any.
Note: While many writers and even some Microsoft documentation (see the

remarks in the MSDN entry) advise readers to avoid , I find
it not only useful but essential, as discussed extensively, with examples, in Chapter 10.
However, as we’ll see, even that use has its risks, which are only resolved through the
NT6 condition variables described in Chapter 10. For now, do not use .

Notice that is useful only after a manual-reset event is signaled
with . Be careful when using to wait for
all events to become signaled. A waiting thread will be released only when all
events are simultaneously in the signaled state, and some signaled events might
be reset before the thread is released.

Exercise 8–5 suggests how to modify , Program 7–2, to exploit events.

Pthreads’ condition variables are somewhat comparable to events, but they are used in
conjunction with a mutex. This is actually very useful and is described in Chapter 10,
and Windows condition variables are available with NT6. and

 create and destroy condition variables.
 and are the waiting functions.

 signals one waiting thread, as when pulsing a Windows auto-reset event.
 signals all waiting threads and is therefore similar to

 applied to a manual-reset event. There is no exact equivalent of
 or of used with manual-reset events.

ptg

E X A M P L E : A P R O D U C E R / C O N S U M E R S Y S T E M 289

Review: The Four Event Usage Models

The combination of auto- and manual-reset events with and
 gives four distinct ways to use events. Each combination is unique and each

is useful, or even necessary, in some situations, and each model combination will be
used in an example or exercise, either in this chapter or Chapter 10.

Warning: Events, if not used properly, can cause race conditions, deadlocks, and
other subtle and difficult-to-diagnose errors. Chapter 10 describes techniques that are
almost always required if you are using events in any but the simplest situations.

Table 8–1 describes the four situations.

An auto-reset event can be thought of as a door with a spring that slams the
door shut, whereas a manual-reset event does not have a spring and will remain
open. Using this metaphor, opens the door and immediately shuts it
after one (auto-reset) or all (manual-reset) waiting threads, if any, go through the
door. It is difficult, however, to know if anyone is waiting at the door.
opens the door and releases it.

Example: A Producer/Consumer System

This example extends Program 8–1 so that the consumer can wait until there is
an available message. This eliminates the problem that requires the consumer to
try again if a new message is not available. The resulting program, Program 8–2,
is called .

Notice that the solution uses a mutex rather than a ;
there is no reason for this other than to illustrate mutex usage. The use of an

Table 8–1 Summary of Event Behavior

Auto-Reset Event Manual-Reset Event

Exactly one thread is released. If
none is currently waiting on the
event, the first thread to wait on
it in the future will be released
immediately. The event is
automatically reset.

All currently waiting threads are
released. The event remains
signaled until reset by some
thread.

Exactly one thread is released,
but only if a thread is currently
waiting on the event. The event is
then reset to nonsignaled.

All currently waiting threads, if
any, are released, and the event is
then reset to nonsignaled.

ptg

290 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

auto-reset event and in the producer are, however, essential for correct
operation to ensure that just one thread is released.

Also notice how the mutex and event are both associated with the message block
data structure. The mutex enforces the critical code region for accessing the data
structure object, and the event signals that there is a new message. Generalizing, the
mutex ensures the message block’s invariants, and the event signals that the object is
in a specified state. Later chapters use this basic technique extensively.

Program 8–2 A Signaling Producer and Consumer

ptg

E X A M P L E : A P R O D U C E R / C O N S U M E R S Y S T E M 291

ptg

292 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

Run 8–2 Producing and Consuming Messages

ptg

E X A M P L E : A P R O D U C E R / C O N S U M E R S Y S T E M 293

Note: It is possible that the consumer, having received the message ready event,
will not actually process the current message if the producer generates yet another
message before the consumer acquires the mutex. This behavior could cause a
consumer to process a single message twice if it were not for the test at the start of
the consumer’s block. Chapter 10 addresses this and similar issues.

Run 8–2 shows execution, along with the summary of messages
produced (12), consumed (4), and known to be lost (7). Question: Is it a defect that
the number sum of consumed and known lost messages is less than the number
produced? If so, how would you fix the defect?

Review: Windows Synchronization Objects

Table 8–2 reviews and compares the essential features of the Windows synchroni-
zation objects.

Table 8–2 Comparison of Windows Synchronization Objects

Mutex Semaphore Event

Named,
Securable
Synchronization
Object

No Yes Yes Yes

Accessible from
Multiple Processes

No Yes Yes Yes

Synchronization Enter Wait Wait Wait

Release/Signal Leave Release or
abandoned

Any thread
can release

Set, pulse

Ownership One thread at a
time. The owning
thread can enter
multiple times
without blocking.

One thread at
a time. The
owning
thread can
wait multiple
times without
blocking.

N/A. Many
threads at
a time, up
to the
maximum
count.

N/A. Any
thread can
set or pulse
an event.

Effect of Release One waiting
thread can enter.

One waiting
thread can
gain
ownership
after last
release.

Multiple
threads can
proceed,
depending
on release
count.

One or
several
waiting
threads will
proceed after
a set or
pulse.

ptg

294 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

Message and Object Waiting

The function is similar to
. Use this function to allow a thread to process user interface events,

such as mouse clicks, while waiting on synchronization objects.

More Mutex and Guidelines

We are now familiar with all the Windows synchronization objects and have ex-
plored their utility in the examples. Mutexes and CSs, the two lock objects, were
the first objects described and, because events will be used extensively in the next
chapter, it is worthwhile to conclude this chapter with some guidelines for using
mutexes and CSs to help ensure program correctness, maintainability, and perfor-
mance.

Nearly everything is stated in terms of mutexes; the statements also apply to
CSs unless noted otherwise.

Note: Many of these guidelines are paraphrased from Programming with
POSIX Threads by David Butenhof.

• If there is no time-out associated with on a mutex
handle (CSs do not have a time-out), the calling thread could block forever. It
is the programmer’s responsibility to ensure that an owned (or locked) mutex
is eventually unlocked.

• If a thread terminates or is terminated before it leaves (unlocks) a CS, the CS
is left in an unstable state and subsequent behavior, such as attempts to enter
the CS, is undefined. Mutexes have the useful abandonment property, and an
abandoned mutex indicates a program bug or failure.

• If times out waiting for a mutex, do not access the
resources that the mutex is designed to protect.

• There may be multiple threads waiting on a given locked mutex. When the
mutex is unlocked, exactly one of the waiting threads is given mutex owner-
ship and moved to the ready state by the OS scheduler based on priority and
scheduling policy. Do not assume that any particular thread will have prior-
ity; as always, program so that your application will operate correctly regard-
less of which waiting thread gains mutex ownership and resumes execution.
The same comment applies to threads waiting on an event; do not assume that
a specific thread will be the one released when the event is signaled or that
threads will be unblocked in any specific order.

ptg

M O R E M U T E X A N D G U I D E L I N E S 295

• A critical code region is everything between the points where the thread gains
and relinquishes mutex ownership. A single mutex can be used to define sev-
eral critical regions. If properly implemented, at most one thread can execute
a mutex’s critical code region at any time.

• Mutex granularity affects performance and is an important consideration.
Each critical code region should be just as long as necessary, and no longer,
and a mutex should be owned just as long as necessary, and no longer. Large
critical code regions, locked for a long period of time, defeat concurrency and
can impact performance.

• Minimize lock usage; locks decrease performance, so use them only when
absolutely required. Chapter 9 describes a situation not requiring any locks,
although locking might, at first, appear to be necessary. Be aware, however, not to
introduce subtle race conditions while minimizing lock usage and critical code
region size.

• Associate the mutex directly with the resource it is designed to protect, possibly in a
data structure. (Programs 8–1 and 8–2 use this technique.).

• Document the invariant as precisely as possible, in words or even as a logical,
or Boolean, expression. The invariant is a property of the protected resource
that you guarantee holds outside the critical code region. An invariant might
be of the form “the element is in both or neither list,” “the checksum on the
data buffer is valid,” or “the linked list is valid.” A precisely stated invariant
can be used with the macro at the end of a critical code region (the Ex-
amples source file is one of several that uses). An example of
a well-stated invariant is:

• Ensure that each critical code region has exactly one entrance, where the thread
locks the mutex, and exactly one exit, where the thread unlocks the mutex. Avoid
complex conditional code and avoid premature exits, such as , , and

 statements, from within the critical code region. Termination handlers are
useful for protecting against such problems.

• If the critical code region becomes too lengthy (longer than one page, perhaps), but
all the logic is required, consider putting the code in a function so that the
synchronization logic will be easy to comprehend. For example, the code to delete a
node from a balanced search tree while the tree is locked might best be put in a
function.

ptg

296 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

More Interlocked Functions

 and have already been shown to
be useful when all you need to do is perform very simple operations on thread-shared
variables. Several other functions allow you to perform atomic operations to compare
and exchange variable pairs.

Interlocked functions are as useful as they are efficient; they are implemented in
user space using atomic machine instructions (for this reason, they are sometimes
called “compiler intrinsic statements”).

 (also see) stores one variable
into another, as follows:

The function returns the original value of and sets to .
 is similar and uses pointer-sized variables;

that is, 32-bit pointers when the program is built for 32-bit operation or 64-bit point-
ers when built for 64-bit operation.

All the interlocked functions described here support 64-bit versions, so there is
no need to mention this for the individual functions.

Note: An additional function, , is supported
only on the Itanium processor.

 adds the second value to the first.

 is added to , and the original value of is returned.
This function allows you to increment a variable by 2 (or more) atomically, which
is not possible with successive calls to .

An additional Examples program, , shows a variation of the
familiar example using in the thread functions.

The next function, , is similar to
 except that the exchange is done only if a comparison is satisfied.

ptg

M E M O R Y M A N A G E M E N T P E R F O R M A N C E C O N S I D E R A T I O N S 297

 atomically performs the following, where
 is a :

One use of the functions is to implement a code
“lock,” similar to a . is the lock variable, with
indicating unlocked and indicating locked. is , is , and

 is initialized to (unlocked). A calling thread knows that it owns the
lock if the function returns . Otherwise, it should sleep or “spin”—that is, execute a
meaningless loop that consumes time for a short period and then try again. This spin-
ning is essentially what does when waiting for a

 with a nonzero spin count; see Chapter 9 for more information.
Finally, there is a family of interlocked logical functions for logical and, or, and ex-

clusive or, and there are 8-bit, 16-bit, and 64-bit versions as well as the default for 32
bits. Hence, we have , ,

, , , and so on.

Memory Management Performance Considerations

Program 9–1, in the next chapter, illustrates the potential performance impact when
multiple threads contend for a shared resource. A similar effect is seen if threads per-
form memory management using and from the multithreaded Stan-
dard C library because these functions synchronize access to a heap data structure.
Here are two possible methods to improve memory management performance.

• Each thread that performs memory management can create a to its own
heap using (Chapter 5). Memory allocation is then performed using

 and rather than using and .

• Consider an open source alternative such as the Hoard Memory Manager (use
your favorite search engine).

ptg

298 C H A P T E R 8 T H R E A D S Y N C H R O N I Z A T I O N

Summary

Windows supports a complete set of synchronization operations that allows
threads and processes to be implemented safely. Synchronization introduces a
host of program design and development issues that you need to consider carefully
to ensure both program correctness and good performance.

Looking Ahead

Chapter 9 concentrates on multithreaded and synchronization performance issues.
The first topic is the performance impact of multiprocessor systems; in some cases,
resource contention can dramatically reduce performance, and several strategies
are provided to assure robust or even improved performance on multiprocessor
systems. Trade-offs between mutexes and s, followed by

 tuning with spin counts, are treated next, followed by the NT6
SRW locks. The chapter concludes with guidelines summarizing the performance-
enhancing techniques, as well as performance pitfalls.

Additional Reading

Windows

Synchronization issues are independent of the OS, and many OS texts discuss the is-
sue at length and within a more general framework.

Other books on Windows synchronization have already been mentioned. When
dealing with more general Windows books, however, exercise caution many have
not been updated to reflect the NT5 and NT6 features.

David Butenhof ’s Programming with POSIX Threads is recommended for in-
depth thread and synchronization understanding, even for Windows programmers.
The discussions and descriptions generally apply equally well to Windows, and
porting the example programs can be a good exercise.

Exercises

8–1. The Examples file contains a defective version of (Program 8–1)
called . Test this program and describe the defect symptoms, if
any. Fix the program without reference to the correct solution.

8–2. Modify so that the time period between new messages is in-
creased. (Suggestion: Eliminate the division in the call.) Ensure that

ptg

E X E R C I S E S 299

the logic that determines whether there is a new message is correct. Also ex-
periment with the defective version, .

8–3. Reimplement with a mutex.

8–4. Reimplement (Program 7–2) using a semaphore rather than
thread suspension to synchronize worker thread start-up.

8–5. Reimplement (Program 7–2) using an event rather than thread
suspension to synchronize worker thread start-up. The recommended
solution uses and a manual-reset event. Other combinations
would not be assured of correct operation. Explain.

8–6. Experiment with Program 8–2 by using different combinations of auto- and
manual-reset events and and (the current solution
uses and an auto-reset event). Are the alternate implementations
and the original implementation correct, given the definition of the program’s
intended functionality? (See the note after Program 8–2.) Explain the results
and explain how the alternate functionality might be useful. Can you make
any of the alternate implementations work by changing the program logic?

8–7. Create a worker thread pool but control the rate of worker thread operation
so that only one thread is allowed to run in any 1-second interval. Modify the
program so that two threads can run in the interval but the overall rate of
thread operation is limited to one per second. Hint: The worker threads
should wait on an event (what type of event?), and a controlling thread should
signal the event (or ?) every second.

8–8. Advanced exercise: s are intended to be used by threads
within the same process. What happens if you create a CS in shared,
memory-mapped storage? Can both processes use the CS? You can perform
this experiment by modifying Program 8–1 so that the producer and
consumer run in different processes.

ptg

This page intentionally left blank

ptg

301

C H A P T E R

9 Locking,
Performance,
and NT6
Enhancements

Chapter 8 introduced synchronization operations and demonstrated their use in
some relatively simple examples. Chapter 10 provides more complex but realistic
and useful message passing and compound object examples and describes a gen-
eral model that solves many practical problems and enhances program reliability.
This chapter is concerned first with locking performance implications and tech-
niques to minimize the impact. The chapter then describes Windows NT6 (Vista,
Server 2008, ...) SRW locks and NT6 thread pools, which provide additional per-
formance improvements and programming conveniences. The chapter ends with a
continuation of the parallelism discussion started in Chapter 7.

While thread synchronization is essential, there are some significant
performance pitfalls, and we describe some of the major issues, both on single-
processor and multiprocessor systems. There are also trade-offs among
alternative solutions. For example, s (CSs) and mutexes are
nearly identical functionally and solve the same fundamental problem. CSs are
generally the most efficient locking mechanism, and SRW locks are even better. In
other cases, interlocked operations are sufficient, and it may even be possible to
avoid locking synchronization altogether with careful design and implementation.

CS–mutex trade-offs form the first topic, along with multiprocessor implica-
tions. CS spin counts, semaphore throttles, and processor affinity are other topics.

Note: Microsoft has implemented substantial performance improvements in
NT5 and again in NT6; these improvements are particularly significant when us-
ing multiple processors. Consequently, some programming guidelines in this
book’s third edition, while appropriate for NT4 and older systems, are now obso-
lete and often counter productive.

ptg

302 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

Synchronization Performance Impact

Synchronization can and will impact your program’s performance. There are
several reasons for this:

• Locking operations, waiting, and even interlocked operations are inherently
time consuming.

• Locking that requires kernel operation and waiting is expensive.

• Only one thread at a time can execute a critical code region, reducing concur-
rency and having the effect of serializing execution of critical code regions.

• Processor contention for memory and cache access on multiprocessor systems
can produce unexpected effects, such as false sharing (described later).

–Mutex Trade-offs

The first step is to assess the locking performance impact and compare
s to mutexes. Program 9–1 shows , which uses a

mutex to lock access to a thread-specific data structure. , not shown
but in the Examples file, does exactly the same thing using a

, and uses interlocked functions. Finally, , also
not shown, uses no locking at all; by design, locking is not necessary in this exam-
ple because each worker accesses its own unique storage. However, see the cau-
tionary note after the bulleted list following the program. The actual programs
allow any number of worker threads.

This set of examples not only illustrates the relative performance impact of
three types of locking but also shows the following concepts.

• Locking is sometimes avoidable or can be minimized with careful program de-
sign. For example, the total amount of work performed is accumulated in the
boss after the threads complete, so the example has no locking requirement
for this computation. However, if each thread updated the global work com-
pleted variable, then the update operation would require a lock.

• The interlocked functions work well in some simple situations, such as
incrementing a shared variable, as in Program 9–1.

• CSs are significantly faster than mutexes in most situations.

• A common technique is to specify the thread argument data structure so that
it contains state data to be maintained by the thread along with a reference to
a mutex or other locking object.

ptg

S Y N C H R O N I Z A T I O N P E R F O R M A N C E I M P A C T 303

• Program 9–1 carefully aligns the thread argument data structure on cache
line boundaries (defined to be 64 bytes in the listing). The alignment imple-
mentation uses the modifier on the structure definition
and the and memory management calls
(all are Microsoft extensions). The cache alignment is to avoid a “false-sharing”
performance bug, as described after the program listing.

Program 9–1 Maintaining Thread Statistics

ptg

304 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

ptg

S Y N C H R O N I Z A T I O N P E R F O R M A N C E I M P A C T 305

You can use the program from Chapter 6 (Program 6–2) to examine the
behavior of the different implementations. Run 9–1a shows the results with 32
threads and 256,000 work units for (no synchronization),
(interlocked), (), and (mutex). The test
system has four processors.

Additional tests performed on otherwise idle systems with 256,000 work units
and 1, 2, 4, 8, 16, 32, 64, and 128 worker threads show similar results, as follows:

• The NS (no synchronization) and IN (interlocked functions) versions are
always fastest, as is to be expected, and they really cannot be distinguished in
this example. The CS version is noticeably slower, by a factor of 2 or more
compared to IN, showing a typical synchronization slowdown. The MX (mutex)
version, however, can take 2 to 30 times longer to execute than CS.

• Prior to NT5, CS performance did not always scale with the number of threads
when the thread count exceeded 4. CS scalability is a significant NT5
improvement.

• NT6 SRW locks (later in this chapter) generally have performance between
the interlocked functions and CSs.

Run 9–1a Performance with Different Locking Techniques

ptg

306 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

• NT6 thread pools (later in this chapter) provide slight additional performance
gains.

• Any type of locking, even interlocked locking, is expensive compared to no lock-
ing at all, but, of course, you frequently need locking. This example was deliber-
ately designed so that locking is not required so as to illustrate locking costs.

• Mutexes are very slow, and unlike the behavior with CSs, performance de-
grades rapidly as the processor count increases. For instance, Table 9–1 shows
the elapsed and times (seconds) for 64 threads and 256,000
work units on 1-, 2-, 4-, and 8-processor systems. Table C-5 (Appendix C) con-
tains additional data. CS performance, however, improves with processor
count and clock rate.

Table 9–1 Mutex and CS Performance
with Multiple Processors

False Sharing

The array deliberately uses integers in cache-line aligned
 structures to avoid the potential performance degradation caused by “false-

sharing” cache contention (see Figure 8–2) on multiprocessor systems. The false-
sharing problem can occur when:

• Two or more threads on different processors concurrently modify adjacent
(that is, on the same cache line) task counts or other variables, making the
modification in their respective cache lines.

• At the next memory barrier, the system would need to make the cache lines
consistent, slowing the program.

False-sharing prevention requires that each thread’s working storage be properly
separated and aligned according to cache line size, as was done in Program 9–1, at
some cost in program complexity and memory.

#Processors,
Clock rate

1, 1.4GHz 55.03 14.15

2, 2.0GHz 93.11 5.30

4, 2.4GHz 118.3 4.34

8, 1.7GHz 262.2 2.02

ptg

T U N I N G M U L T I P R O C E S S O R P E R F O R M A N C E W I T H C S S P I N C O U N T S 307

A Model Program for Performance Experimentation

The Examples file includes a project, , that generalizes
Program 9–1 and enables experimentation with different boss/worker models, ap-
plication program characteristics, and Windows locking and threading mecha-
nisms (not all of which have been described yet). Program features, controlled
from the command line, include the following:

• The lock type (CS, mutex, or SRW lock).

• The lock holding time, or delay, which models the amount of work performed
in the critical code section.

• The number of worker threads, limited only by system resources.

• Thread pool usage, if any.

• The number of sleep points where a worker yields the processor, using
, while owning the lock. Sleep points model a worker thread that

waits for I/O or an event, while the delay models CPU activity.

The delay and sleep point parameters significantly affect performance because
they affect the amount of time that a worker holds a lock, preventing other
workers from running.

The program listing contains extensive comments explaining how to run the
program and set the parameters. Exercise 9–1 suggests some experiments to
perform on as wide a variety of systems as you can access. A variation,

, supports spin counts, as explained in the next section.
Note: is a simple model that captures many worker

thread features. It can often be tuned or modified to represent a real application,
and if the model shows performance problems, the application is at risk for similar
problems. On the other hand, good performance in the model does not necessarily
indicate good performance in the real application, even though the model may
assist you in application performance tuning.

Tuning Multiprocessor Performance with CS Spin Counts

 locking (enter) and unlocking (leave) are efficient because
CS testing is performed in user space without making the kernel system call that
a mutex makes. Unlocking is performed entirely in user space, whereas

 requires a system call. CS operation is as follows.

ptg

308 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

• A thread executing tests the CS’s lock bit. If the bit
is off (unlocked), then sets it atomically as part of
the test and proceeds without ever waiting. Thus, locking an unlocked CS is
extremely efficient, normally taking just one or two machine instructions. The
owning thread identity is maintained in the CS data structure, as is a recur-
sion count.

• If the CS is locked, enters a tight loop on a multi-
processor system, repetitively testing the lock bit without yielding the proces-
sor (of course, the thread could be preempted). The CS spin count determines
the number of times repeats the loop before giving
up and calling . A single-processor system gives up im-
mediately; spin counts are useful only on a multiprocessor system where a dif-
ferent processor could change the lock bit.

• Once gives up testing the lock bit (immediately on a
single-processor system), enters the kernel and the
thread goes into a wait state, using a semaphore wait. Hence, CS locking is ef-
ficient when contention is low or when the spin count gives another processor
time to unlock the CS.

• is implemented by turning off the lock bit, after
checking that the thread actually owns the CS. also
notifies the kernel, using , in case there are any waiting
threads.

Consequently, CSs are efficient on single-processor systems if the CS is likely
to be unlocked, as shown by the CS version of Program 9–1. The multiprocessor
advantage is that the CS can be unlocked by a thread running on a different
processor while the waiting thread spins.

The next steps show how to set spin counts and how to tune an application by
determining the best spin count value. Again, spin counts are useful only on multi-
processor systems; they are ignored on single-processor systems.

Setting the Spin Count

You can set CS spin counts at CS initialization or dynamically. In the first case,
replace with

, where there is an additional count parameter. There is no way to
read a CS’s spin count.

ptg

N T 6 S L I M R E A D E R / W R I T E R L O C K S 309

You can change a spin count at any time.

MSDN mentions that 4,000 is a good spin count for heap management and
that you can improve performance with a small spin count when a critical code
section has short duration. The best value is, however, application specific, so spin
counts should be adjusted with the application running in a realistic multiproces-
sor environment. The best values will vary according to the number of processors,
the nature of the application, and so on.

 is in the Examples file. It is a variation of the
 program, and it includes a spin count argument on the

command line. You can run it on your host processor to find a good value for this
particular test program on your multiprocessor systems, as suggested in Exercise
9–2.

NT6 Slim Reader/Writer Locks

NT6 supports SRW locks.1 As the name implies, SRWs add an important feature:
they can be locked in exclusive mode (“write”) and shared mode (“read”), and they
are light weight (“slim”). Exclusive mode is comparable to
and mutex locking, and shared mode grants read-only access. The locking logic is
similar to file locking (Chapter 3), as are the benefits.

SRWs have several features that are different from s.

• An SRW lock can be acquired in either mode, but you cannot upgrade or down-
grade the mode between shared and exclusive.

1 Some writers use the term “Vista SRW locks” because Vista was the first Windows release to support
this feature.

ptg

310 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

• SRW locks are light weight and small, the size of a pointer (either 32 or 64
bits). Also, there is no associated kernel object for waiting, thus SRW locks re-
quire minimal resources.

• SRW locks do not support recursion because there is insufficient state infor-
mation in the lock.

• You cannot configure or adjust the spin count; Microsoft implemented a spin
count value that they determined to provide good results in a wide variety of
situations.

• While you do need to initialize an SRW lock, there is no need to delete it.

• There is no nonblocking call equivalent to .

• Both CSs and SRW locks can be used with Windows condition variables
(Chapter 10).

With this comparison, the API is self-explanatory, using
the and types. The initialization function (there is no delete
function) is:

There are two SRW acquisition and release functions, corresponding to the
two modes. SRWs use the terms “acquire” and “release,” as opposed to “enter” and
“leave.” You need to release a lock with the function corresponding to the acquis-
tion. The functions for shared, or read, mode are:

The two corresponding functions for exclusive, or write, mode are:

ptg

N T 6 S L I M R E A D E R / W R I T E R L O C K S 311

There is one additional SRW function, ,
which Chapter 10 describes along with condition variables.

You can now use SRW locks in exclusive mode the same way that you use CSs,
and you can also use shared mode if the critical code region does not change the
guarded state variables. The advantage of shared mode is that multiple threads
can concurrently own an SRW in shared mode, which can improve concurrency in
many applications.

In summary, SRWs provide improved locking performance compared to mu-
texes and CSs for three principal reasons:

• SRWs are light weight, both in implementation and in resource requirements.

• SRWs allow shared mode access.

• SRWs do not support recursion, simplifying the implementation.

To test SRW locks, there is an SRW version of called .
 also has an option to use SRWs, and there is also an ex-

clusive/shared parameter that specifies the percentage of shared acquisitions. See
the code comments. Program 9–2 uses both an SRW lock and a thread pool (see
the next section).

Run 9–1b compares and performance for several thread
count values, running on the same four-processor system used in Run 9–1a.

The experimental results confirm that SRW locks, used in exclusive mode (the
worst case), are faster than CSs (by a factor of 2 in this case). Appendix C shows
timing results on several machines under a variety of circumstances. An exercise
suggests testing a situation in which CSs can be more competitive.

The POSIX Pthreads specification supports reader/writer locks. The type is
, and there are the expected functions for locking and unlock-

ing, with a try option.

ptg

312 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

Thread Pools to Reduce Thread Contention

Programs with numerous threads can cause performance problems beyond locking
issues. These problems include:

• Each thread has a distinct stack, with 1MB as the default stack size. For in-
stance, 1,000 threads consume 1GB of virtual address space.

• Thread context switching is time consuming.

• Thread context switches can cause page faults during stack access.

Run 9–1b Comparing SRW and CS Performance

ptg

T H R E A D P O O L S T O R E D U C E T H R E A D C O N T E N T I O N 313

Nonetheless, it is very natural to use multiple threads, where each thread rep-
resents a distinct activity, such as a worker processing its own work unit. It is diffi-
cult, and often self-defeating, to attempt to multiplex user-created worker threads.
For example, an application cannot effectively determine how to load-balance tasks
among the worker threads; this is a problem for the kernel’s scheduler to solve.
Furthermore, reducing the number of threads has the effect of serializing activities
that are inherently parallel.

Several useful techniques and Windows features can help address this prob-
lem:

• Semaphore throttles, a simple programming technique that is still useful on
NT4 and, to a lesser extent, on NT5 and NT6. The next section has a brief de-
scription.

• I/O completion ports, which are described and illustrated in Chapter 14, with
a very brief description in a following section.

• Asynchronous I/O (overlapped and extended), also covered in Chapter 14.
Generally, asynchronous I/O is difficult to program and does not provide per-
formance advantages until NT6. Extended I/O, but not overlapped I/O, gives
excellent performance on NT6 (Vista, Server 2008, ...) and can be worth the
programming effort.

• NT6 thread pools, where the application submits callback functions to a
thread pool. The kernel executes the callback functions from worker threads.
Typically, the number of worker threads is the same as the number of proces-
sors, although the kernel may make adjustments. We describe thread pools af-
ter the semaphore throttle section.

• Asynchronous procedure calls (APC), which are important in the next chapter.

• A parallelization framework, such as OpenMP, Intel Thread Building Blocks,
or Cilk++. These frameworks are language extensions that express program
parallelism; as language extensions, they are out of scope for this book. None-
theless, there’s a (very) brief overview at the end of this chapter.

Before proceeding to NT6 thread pools, there are short descriptions of semaphore
throttles and I/O completion ports. These descriptions help to motivate NT6
thread pools.

Semaphore “Throttles” to Reduce Thread Contention

Semaphores give a natural way to retain a simple threading model while still mini-
mizing the number of active, contending threads. The solution is simple conceptu-

ptg

314 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

ally and can be added to an existing application program, such as the and
 examples, very quickly. The solution, called a semaphore

throttle, uses the following techniques. We’ll assume that you are using a mutex,
some other kernel object, or file locks and have a good reason for doing so.

• The boss thread creates a semaphore with a small maximum value, such as ,
which represents the maximum number of active threads, possibly the
number of processors, compatible with good performance. Set the initial count
to the maximum value as well. This number can be a parameter and tuned to
the best value after experimentation, just as spin lock counts can be tuned.

• Each worker thread waits on the semaphore before entering its critical code
section. The semaphore wait can immediately precede the mutex or other
wait.

• The worker thread should then release the semaphore (release count of)
immediately after leaving the critical code section.

• If the semaphore maximum is , the mutex is redundant.

• Overall CS or mutex contention decreases as the thread execution is serialized
with only a few threads waiting on the mutex or CS.

The semaphore count simply represents the number of threads that can be
active at any one time, limiting the number of threads contending for the mutex,
CS, processors, or other resource. The boss thread can even throttle the workers
and dynamically tune the application by waiting on the semaphore to reduce the
count if the boss determines that the workers are running too slowly (for example,
the boss could monitor exit flags maintained by each worker, as in Program 8–1),
and it can release semaphore units to allow more workers to run. Note, however,
that the maximum semaphore count is set at create time and cannot be changed.

The following code fragment illustrates a modified worker loop with two
semaphore operations.

ptg

T H R E A D P O O L S T O R E D U C E T H R E A D C O N T E N T I O N 315

There is one more variation. If a particular worker is considered to be “expen-
sive” in some sense, it can be made to wait for several semaphore units. As noted in
the previous chapter, however, two successive waits can create a deadlock. An exer-
cise in the next chapter shows how to build an atomic multiple-wait compound
semaphore object.

, the familiar example, adds a sixth parameter that
is the initial throttle semaphore count for the number of active threads. You can
experiment with this count as suggested in one of the exercises.

Comment: As mentioned previously, this technique is useful mostly on older
Windows releases with multiple processors, before NT5. NT5 and NT6 have im-
proved synchronization performance, so you should experiment carefully before
deploying a semaphore throttle solution. Nonetheless:

• Throttles are still useful in some NT5 and NT6 systems when using mutexes
and multiple processors (see Run 9–1c and Table 9–1, later in this chapter).

• I’ve also found semaphore throttles useful to limit concurrent access to other
resources, such as files and memory. Thus, if multiple threads all have large,
thread-specific memory requirements, limiting the number of active threads
can reduce page faults and thrashing.

• You can add a semaphore throttle very easily to an existing program, and you
do not need to depend on the Windows version or new functionality, such as
thread pools.

Run 9–1c compares and (the semaphore throttle ver-
sion) for a large number of threads (256). is slightly but consistently
faster (about 24 seconds faster over nearly 8 minutes).

Run 9–1c Using a Semaphore Throttle

ptg

316 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

I/O Completion Ports

Chapter 14 describes I/O completion ports, which provide another mechanism to
avoid thread contention by limiting the number of threads. I/O completion ports allow
a small number of threads to manage a large number of concurrent I/O operations.
Individual I/O operations are started asynchronously so that the operation is, in
general, not complete when the read or write call returns. However, as outstanding
operations complete, data processing is handed off to one of a small number of worker
threads. Chapter 14 has an example using a server communicating with remote
clients (Program 14–4).

NT6 Thread Pools

NT6 thread pools are easy to use, and it’s also simple to upgrade an existing pro-
gram to use a thread pool rather than threads. The major thread pool features are
as follows:

• The application program creates “work objects” rather than threads and sub-
mits the work objects to the thread pool. Each work object is a callback func-
tion and a parameter value and is identified by handle-like (but not a)
structure that identifies the work object.

• The thread pool manages a small number of “worker threads” (not to be con-
fused with the application worker threads in preceding examples). Windows
then assigns work objects to worker threads, and a worker thread executes a
work object by calling the callback function with the work object’s parameter.

• When a work object completes, it returns to the Windows worker thread,
which can then execute another work object. Notice that a callback function
should never call or , as that would terminate
the Windows worker thread. A work object can, however, submit another work
object, which could be itself, requesting that the same work object be executed
again.

• Windows can adjust the number of worker threads based on application be-
havior. The application can, however, set upper and lower bounds on the num-
ber of worker threads.

• There is a default thread pool, but applications can create additional pools.
However, the pools will all contend for the same processor resources, so the ex-
amples use the default pool.

ptg

N T 6 T H R E A D P O O L S 317

Thread pools allow the Windows kernel to exploit sophisticated techniques to de-
termine how many worker threads to create and when to call the work objects.
Furthermore, invoking a callback function avoids the overhead of thread context
switching, and this is most effective when the work item callback functions are
short.

NT5 supports thread pools, and we use them in later chapters. NT6 intro-
duced a new and more powerful thread pool API, which we use in this chapter.
MSDN compares the API functions (search for “thread pool API”).

We convert to (for “Vista Thread Pool”) to illus-
trate the changes. The Examples file also contains , a conversion of
Chapter 7’s multithreaded (word count) utility.

The conversion steps are as follows; function descriptions follow:

• Add an initialization call to and, op-
tionally, modify the environment.

• Create a work object (callback function and argument), which is similar to cre-
ating a thread in the suspended state. This creates a work object handle to use
with the other functions; note that this is not a but a object.

• Submit the work object using , which is analogous
to .

• Replace the thread wait call with calls to
. The calling, or boss, thread will block until all calls to the work object

complete.

• Replace the thread handle calls with calls to
.

We describe each function in turn and then show the listing and
performance results.

Caution: Be careful using the C library in the callback functions because the
Windows executive does not use . Many functions, such as

 statements, will usually work if you use the multithreaded C library (see
Chapter 7). However, some C library functions, such as , could fail in a
callback function.

This is the thread pool work object creation function.

ptg

318 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

Parameters

• is the callback function; the function signature is described later.

• is optional. The value will be passed as a parameter to every call to the
callback function. Notice that every call to the callback function for this work
object receives the same value.

• is an optional structure. The default is usually
sufficient, but see the function to un-
derstand the advanced options, and Chapter 14 has more on the thread pool
environment.

• The return value is the thread pool work object and is in case of failure.

Each call to this function posts a work object (that is, a callback function call and
parameter) to the thread pool. The Windows executive’s thread pool implementa-
tion decides when to call the individual instances. The callbacks can execute in
parallel on separate processors.

 is the value that returned. Assuming that this
value is valid, never fails, since all the required re-
sources were allocated previously.

The callback function associated with will be called once for every
 call. The Windows kernel scheduler determines which of several

threads will run a specific call. The programmer does not need to manage threads

ptg

N T 6 T H R E A D P O O L S 319

but still must manage synchronization. Furthermore, a specific callback instance
might run on different threads at different points.

This wait function does not have a time-out and returns when all submitted work
objects (callbacks) complete. Optionally, you can cancel callbacks for the work ob-
jects that have not started, using the second parameter, but callbacks that have
started will run to completion. The first parameter is the thread pool work object.

All that is required is a valid work object.

The Callback Function

This is our first use of callback functions, although we’ll see them again with ex-
tended I/O and timers (Chapter 14) and APCs (Chapter 10). The thread pool will in-
voke this function once for every invocation.

The callback function replaces the thread function.

 is the work object, and is the value from the work object
creating call. The value identifies this specific

ptg

320 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

callback instance (not the work object, which may have multiple instances), allow-
ing the callback function to provide the Windows executive with information that
may help scheduling. Specifically, informs the executive
that the callback instance may execute for a long time so that the executive can at-
tempt to assign an existing or new worker thread to this instance. Normally, call-
back instances are expected to execute quickly.

Using Thread Pools

Program 9–2 modifies Program 9–1 to use an SRW lock and a thread pool.

Program 9–2 Thread Performance with a Thread Pool

ptg

N T 6 T H R E A D P O O L S 321

ptg

322 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

Run 9–2 compares performance for , which uses worker threads, and
, which uses work objects, on a four-processor system, with the ex-

pectation that the second program will be faster.

• First, the two programs are run with large “tasks to complete” values (the sec-
ond command line argument) for the worker threads (or work objects); this
means that the workers are long running. It turns out that the VTP is a bit
slower (3.954 seconds instead of 3.481 seconds).

• However, when there is a large number of workers (the first command line ar-
gument), each with a small amount of work, the thread pool solution is faster.
See the second pair of test runs, where the thread pool version requires 2.596
seconds, and the threads version requires 3.368 seconds.

Run 9–2 Using a Thread Pool, Fast and Slow Workers

ptg

N T 6 T H R E A D P O O L S 323

If you test , it is interesting to add a call to
from within the callback function. You can either print the value or add a
field to the thread argument to display within the boss function. You will find that
Windows will use a small number of threads, typically one per processor.

Submitting Callbacks to the Thread Pool

 is an alternative to the
, , sequence.

The callback function is a different type: instead of
. The work item is omitted because it’s not required.

The Thread Pool Environment

Both and have op-
tional callback environment parameters, which are frequently for the de-
fault value. However, the callback environment can be useful, and Chapter 14
describes some advanced thread pool techniques that use the environment.

The example in the Examples file illustrates a simple environment
use in which the environment is set to indicate that the callback functions are
long running. However, in this example, there was no measurable effect on perfor-
mance, just as with Run 9–2.

The Process Thread Pool

Each process has a dedicated thread pool. When you use
, , and , the

ptg

324 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

callback functions are all executed using the process thread pool. Therefore, sev-
eral distinct callback functions could contend for this pool, and this is normally
the desired behavior because it allows the executive to schedule work objects with
the available resources.

Our examples (and) both share the property that
there is only one callback function, and the callback functions dominate execution
time.

You can, however, create additional thread pools with ;
however, test carefully to see if this provides any benefit or if it degrades performance.

Other Threadpool Callback Types

 associates a work callback function with a
structure. In the examples here, the work function performs computation and pos-
sibly I/O (see the example in the Examples file). There are, however,
other callback types that can be associated with the process thread pool.

• specifies a callback function to execute after a
time interval and possibly periodically after that. The callback will execute on
a thread in the pool. Chapter 14 has an example, .

• specifies a callback function to execute when an over-
lapped I/O operation completes on a . Again, see Chapter 14.

• specifies a callback function to execute when an ob-
ject, specified by , is signaled.

Summary: Locking Performance

We now have four locking mechanisms as well as thread pools and the possibility of
no locking. The seven program variations (including) illustrate
the relative performance, although, as with any statement about performance, re-
sults may vary depending on a wide variety of software and hardware factors. None-
theless, as a generalization, the mechanisms, from fastest to slowest, are:

• No synchronization, which is possible in some situations.

• Interlocked functions.

• SRW locks with a worker thread pool (NT6 only). The locks are exclusive mode.
A mix of shared and exclusive locking could improve performance.

• SRW locks with conventional thread management (NT6 only).

ptg

P A R A L L E L I S M R E V I S I T E D 325

• Critical sections, which can be optimized with spin count tuning.

• Mutexes, which can be dramatically slower than the alternatives, especially
with multiple processors. A semaphore throttle can be marginally useful in
some cases with a large number of threads.

Appendix C gives additional results, using other systems and different param-
eter values.

Parallelism Revisited

Chapter 7 discussed some basic program characteristics that allow application
threads to run in parallel, potentially improving program performance, especially
on multiprocessor systems.

Parallelism has become an important topic because it is the key to improving
application performance, since processor clock rates no longer increase regularly
as they have in the past. Most systems today and in the foreseeable future,
whether laptops or servers, will have clock rates in the 2–3GHz range. Instead,
chip makers are marketing multicore chips with 2, 4, or more processors on a sin-
gle chip. In turn, system vendors are installing multiple multicore chips in their
systems so that systems with 4, 8, 16, or more total processors are common.2

Therefore, if you want to increase your application’s performance, you will need
to exploit its inherent parallelism using threads, NT6 thread pools, and, possibly,
parallelism frameworks (which this section surveys). We’ve seen several simple ex-
amples, but these examples give only a partial view of what can be achieved:

• In most cases, such as and , the parallel operations are straight-
forward. There is one thread per file.

• is more complex, as it divides a single data structure, an array, into
multiple parts, sorts them, and merges the results. This is a simplistic use of
the divide and conquer strategy.

• (Chapter 14) divides the file into multiple segments and works on them
independently.

In each case, the maximum potential speedup, compared to a single-threaded
implementation or running on a single processor, is easy to determine. For example,

2 Nearly all desktop systems, most laptops, and many notebooks sold today have multiple processors
and cost less than single-processor systems sold a few years ago. The “Additional Reading” section sug-
gests references for parallelism and the appropriate technology trends.

ptg

326 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

the speedup for and is limited by the minimum of the number of pro-
cessors and the number of files.

A Better Foundation and Extending Parallel Program Techniques

The previous parallelism discussion was very informal and intuitive, and the imple-
mentation, such as , are all boss/worker models where the workers are long-
lived, executing for essentially the entire duration of the application execution.

While a formal discussion is out of scope for this book, it’s important to be
aware that parallelism has been studied extensively, and there is a solid theoreti-
cal foundation along with definitions for important concepts. There are also ana-
lytical methods to determine algorithmic complexity and parallelism. Interested
readers will find several good treatments; for example, see Chapter 27 of Cormen,
Leiserson, Rivest, and Stein, Introduction to Algorithms, Third Edition.

Furthermore, parallel programming techniques are far more extensive than
the boss/worker examples used here. For example:

• Parallel sort-merge can be made far more effective than ’s rudimen-
tary divide and conquer design.

• Recursion and divide and conquer techniques are important for exploiting
finer-grained program parallelism where parallel tasks can be short-lived rel-
ative to total program duration.

• Computational tasks that are amenable to parallel programming include, but
are hardly limited to, matrix multiplication, fast Fourier transformations, and
searching. Usually, a new thread is created for every recursive function call.

• Games and simulations are other application types that can often be decom-
posed into parallel components.

In short, parallelism is increasingly important to program performance. Our
examples have suggested the possibilities, but there are many more that are be-
yond this book’s scope.

Parallel Programming Alternatives

Once you have identified the parallel components in your program, the next issue
is to determine how to implement the parallelism. There are several alternatives;
we’ve been using the first two, which Windows supports well.

ptg

P A R A L L E L I S M R E V I S I T E D 327

• The most direct approach is to “do it yourself” (DIY), as in some of the exam-
ples. This requires direct thread management and synchronization. DIY is
manageable and effective for smaller programs or programs with a simple
parallel structure. However, DIY can become complex and error prone, but not
impossible, when implementing recursion.

• Thread pools, both legacy and NT6 thread pools, enable advanced kernel schedul-
ing and resource allocation methods that can enhance performance. Be aware,
however, that the NT6 thread pool API is limited to that kernel; this should be-
come less of an issue in coming years.

• Use a parallelism framework, which extends the programming language to
help you express program parallelism. See the next section.

Parallelism Frameworks

Several popular “parallelism frameworks” offer alternatives to DIY or thread
pools. Framework properties include:

• Programming language extensions that express program parallelism. The two
most common extensions are to express loop parallelism (that is, every loop it-
eration can execute concurrently) and fork-join parallelism (that is, a function
call can run independently from the calling program, which eventually must
wait for the called function to complete). The language extensions may take
the form of compiler directives or actual extensions that require compiler front
ends.

• The supported languages almost always include C and C++, often C# and
Java, and Fortran for scientific and engineering applications.

• There is run-time support for efficient scheduling, locking, and other tasks.

• There is support for result “reduction” where the results from parallel tasks
are combined (for instance, word counts from individual files are summed),
and there is care to minimize locking.

• Parallel code can be serialized for debugging and produces the same results as
the parallel code.

• The frameworks frequently contain tools for race detection and identifying
and measuring parallelism during program execution.

• The frameworks are sometimes open source and portable to UNIX and Linux.

ptg

328 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

Popular parallelism frameworks include:3

• OpenMP is open source, portable, and scalable. Numerous compilers and de-
velopment environments, including Visual C++, support OpenMP.

• Intel Thread Building Blocks (TBB) is a C++ template library. The commercial
release is available on Windows as well as many Linux and UNIX systems.

• Intel’s Cilk++ supports C and C++. Cilk++ is available on Windows and Linux
and provides a simple language extension with three key words along with a
run-time library for “work stealing” scheduling. Cilk++ also provides flexible
reduction templates.

• .NET Framework 4’s Task Parallel Library (TPL), not yet available, will sim-
plify creating applications with parallelism and concurrency.

Do Not Forget the Challenges

As stated previously, this book takes the point of view that multithreaded pro-
gramming is straightforward, beneficial, and even enjoyable. Nonetheless, there
are numerous pitfalls, and we’ve provided numerous guidelines to help produce
reliable multithreaded programs; there are even more guidelines in the next chap-
ter. Nonetheless, do not overlook the challenges when developing multithreaded
applications or converting legacy systems. These challenges are daunting even
when using a parallelism framework. Here are some of the notable challenges
that you can expect and that have been barriers to successful implementations:

• Identifying the independent subtasks is not always straightforward. This is
especially true for legacy applications that may have been developed with no
thought toward parallelism and threading.

• Too many subtasks can degrade performance; you may need to combine
smaller subtasks.

• Too much locking can degrade performance, and too little can cause race con-
ditions.

• Global variables, which are common in large, single-threaded applications,
can cause races if independent subtasks modify global variables. For example,
a global variable might contain the sum or other combination of results from
separate loop iterations; if the iterations run in parallel, you will need to find

3 Wikipedia covers all of these, and a Web search will yield extensive additional information. This list
is not complete, and it will take time for one or more frameworks to become dominant.

ptg

P R O C E S S O R A F F I N I T Y 329

a way to combine (“reduce”) the independent results to produce a single result
without causing a data race.

• There can be subtle performance issues due to the memory cache architecture
and the combination of multiple multicore chips.

Processor Affinity

The preceding discussion has assumed that all processors of a multiprocessor sys-
tem are available to all threads, with the kernel making scheduling decisions and
allocating processors to threads. This approach is simple, natural, consistent with
multiprocessors, and almost always the best approach. It is possible, however, to
assign threads to specific processors by setting processor affinity. Processor affin-
ity can be used in several situations.

• You can dedicate a processor to a small set of one or more threads and exclude
other threads from that processor. This assumes, however, that you control all
the running applications, and even then, Windows can schedule its own
threads on the processor.

• You can assign a collection of threads to a processor pair sharing L2 cache (see
Figure 8–2) to minimize the delay caused by memory barriers.

• You may wish to test a processor. Such diagnostic testing, however, is out of
scope for this book.

• Worker threads that contend for a single resource can be allocated to a single
processor.

You may wish to skip this section, considering the specialized nature of the topic.

System, Process, and Thread Affinity Masks

Each process has its own process affinity mask, which is a bit vector. There is also
a system affinity mask.

• The system mask indicates the processors configured on this system.

• The process mask indicates the processors that can be used by the process’s
threads. By default, its value is the same as the system mask.

• Each individual thread has a thread affinity mask, which must be a subset of
the process affinity mask. Initially, a thread’s affinity mask is the same as the
process mask.

ptg

330 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

• Affinity masks are pointers (either 32 or 64 bits). Win32 supports up to 32 pro-
cessors. Consult MSDN if you need to deal with more than 64 processors on
Win64.

There are functions to get and set the masks, although you can only read (get)
the system mask and can only set thread masks. The set functions use thread and
process handles, so one process or thread can set the affinity mask for another, as-
suming access rights, or for itself. Setting a mask has no effect on a thread that
might already be running on a processor that is masked out; only future schedul-
ing is affected.

A single function, , reads both the system and pro-
cess affinity masks. On a single-processor system, the two mask values will be .

The process affinity mask, which will be inherited by any child process, is set
with .

The new mask must be a subset of the values obtained from
. It does not, however, need to be a proper subset. Such a limitation would

not make sense because you would not be able to restore a system mask to a previous
value. The new value affects all the threads belonging to this process.

Thread masks are set with a similar function.

ptg

P E R F O R M A N C E G U I D E L I N E S A N D P I T F A L L S 331

These functions are not designed consistently. re-
turns a with the previous affinity mask; indicates an error.

, however, returns a and does not return the previous value.
 is a variation of .

You specify the preferred (“ideal”) processor number (not a mask), and the sched-
uler will assign that processor to the thread if possible, but it will use a different
processor if the preferred processor is not available. The return value gives the
previous preferred processor number, if any.

Finding the Number of Processors

The system affinity mask does indicate the number of processors on the system;
all that is necessary is to count the number of bits that are set. It is easier, how-
ever, to call , which returns a structure whose
fields include the number of processors and the active processor mask, which is
the same as the system mask. A simple program and project, , in the Ex-
amples file, displays this information along with the Windows version. See Exer-
cise 6–12 for output on the system used for the run screenshots in this
chapter.

Performance Guidelines and Pitfalls

Multiple threads can provide significant programming advantages, including simpler
programming models and performance improvement. However, there are several per-
formance pitfalls that can have drastic and unexpected negative performance impact,
and the impact is not always consistent on different computers, even when they are
running the same Windows version. Some simple guidelines, summarizing the expe-
rience in this chapter, will help you to avoid these pitfalls. Some of these guidelines
are adapted from Butenhof’s Programming with POSIX Pthreads, as are many of the
designing, debugging, and testing hints in the next chapter.

In all cases, of course, it’s essential to maintain program correctness. For ex-
ample, while the programs, as written, can run without locking, that is
not the case in general. Likewise, when you make a critical code section as small
as possible, be sure not to move critical code out of the code section. Thus, if the
critical code section adds an element to a search tree, all the code required for the
insertion operation must be in the critical code section.

• Beware of conjecture and theoretical arguments about performance, which
often sound convincing but can be wrong in practice. Test the conjecture with
a simple prototype, such as , or with alternative
implementations of your application.

ptg

332 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

• Test application performance on as wide a variety of systems as are available to
you. It is helpful to run with different memory configurations, processor types,
Windows versions, and number of processors. An application may perform very
well on one system and then have extremely poor performance on a similar one;
see the discussion after Program 9–1.

• Locking is expensive; use it only as required. Hold (own) a lock, regardless of
the type, only as long as required and no longer (see earlier comment). As an
additional example, consider the message structures used in
(Program 8–1). The critical code section incudes everything that modifies the
message structure, and nothing else, and the invariant holds everywhere
outside the critical code section.

• Use distinct locks for distinct resources so that locking is as granular as
possible. In particular, avoid global locks.

• High lock contention hinders good performance. The greater the frequency of
thread locking and unlocking, and the larger the number of threads, the greater
the performance impact. Performance degradation can be drastic and is not just
linear in the number of threads. Note, however, that this guideline involves a
trade-off with fine-grained locking, which can increase locking frequency.

• CSs provide an efficient, lightweight locking mechanism. When using CSs in a
performance-critical multiprocessor application, tune performance with the
CS spin counts. SRW locks are even more efficient but do not have adjustable
spin counts.

• Semaphores can reduce the number of active contending threads without
forcing you to change your programming model.

• Multiprocessors can cause severe, often unexpected, performance impacts in
cases where you might expect improved performance. This is especially true
when using mutexes. Reducing contention and using thread affinity are
techniques to maintain good performance.

• Investigate using commercially available profiling and performance analysis
tools, which can help clarify the behavior of the threads in your program and
locate time-consuming code segments.

Summary

Synchronization can impact program performance on both single-processor and
multiprocessor systems; in some cases, the impact can be severe. Careful program
design and selection of the appropriate synchronization objects can help assure
good performance. This chapter discussed a number of useful techniques and

ptg

E X E R C I S E S 333

guidelines and illustrated performance issues with a simple test program that
captures the essential characteristics of many real programming situations.

Looking Ahead

Chapter 10 shows how to use Windows synchronization in more general ways, partic-
ularly for message passing and correct event usage. It also discusses several program-
ming models, or patterns, that help ensure correctness and maintainability, as well as
good performance. Chapter 10 creates several compound synchronization objects that
are useful for solving a number of important problems. Subsequent chapters use
threads and synchronization as required for applications, such as servers. There are
also a few more basic threading topics; for example, Chapter 12 illustrates and dis-
cusses thread safety and reentrancy in DLLs.

Additional Reading

Chapter 10 provides information sources that apply to this chapter as well. Duffy’s
Concurrent Programming on Windows, in addition to covering the synchroniza-
tion API, also gives insight into the internal implementation and performance im-
plications and compares the Windows features with features available in .NET. In
particular, see Chapter 6 for synchronization and Chapter 7 for thread pools.

Chapter 27 of Cormen, Leiserson, Rivest, and Stein, Introduction to Algo-
rithms, Third Edition, is invaluable for understanding parallelism and effective
parallel algorithm design.

The Wikipedia “Multi-core” entry gives a good introduction to the commercial
and technical incentives as well as long-term trends for multicore systems.

Exercises

9–1. Experiment with the variations on your own system and on as
many different systems (both hardware and Windows versions) as are avail-
able to you. Do you obtain similar results as those reported in this chapter
and in Appendix C?

9–2. Use , included in the Examples file, to experi-
ment with spin counts to see whether adjusting the
count can improve and tune multiprocessor performance when you have a
large number of threads. Results will vary from system to system, and I
have found approximately optimal points ranging from 2,000 to 10,000.
How do the best results compare with exclusive-mode SRW locks?

ptg

334 C H A P T E R 9 L O C K I N G , P E R F O R M A N C E , A N D N T 6 E N H A N C E M E N T S

9–3. Experiment with the variations by modifying the delay time in the
worker function. For example, increasing the delay should increase the to-
tal elapsed time for all variations, but the relative impact of the locking
model could be less.

9–4. Use to experiment with delay and sleep point
counts.

9–5. also uses a semaphore throttle to limit the num-
ber of running threads. Experiment with the count on both single-processor
and multiprocessor systems. If an NT4 system is available, compare the re-
sults with NT5 and NT6.

9–6. Do the seven variations all operate correctly, ignoring performance,
on multiprocessor systems? Experiment with a large number of worker
threads. Run on a multiprocessor Windows 2003 or 2008 server. Can you re-
produce the “false-sharing” performance problem described earlier?

9–7. Enhance Program 9–2 () to display the thread number as
suggested after the program listing.

9–8. What is the effect of using an NT6 thread pool with a CS or mutex? Sugges-
tion: Modify . What is the effect of using a semaphore throt-
tle with a CS (modify)?

9–9. Rewrite to use . Com-
pare the results and ease of programming with .

9–10. Use processor affinity as a possible performance-enhancement technique by
modifying this chapter’s programs.

9–11. Run 9–1b compared SRWs with CSs, and SRWs were always considerably
faster. Modify the programs so that they each use a pair of locks
(be careful to avoid deadlocks!), each guarding a separate variable. Are CSs
more competitive in this situation?

9–12. The programs have an additional command line parameter, not
shown in the listings, that controls the delay time in the worker threads.
Repeat the comparisons in Runs 9–1a and 9–1b with larger and smaller de-
lays (changing the amount of contention). What is the effect?

ptg

335

C H A P T E R

10 Advanced
Thread
Synchronization

The preceding chapter described Windows performance issues and how to deal
with them in realistic situations. Chapter 8 described several simple problems
that require synchronization. This chapter solves additional practical but more
complex synchronization problems, relying on the ideas introduced in Chapters 8
and 9.

The first step is to combine two or more synchronization objects and data to
create compound objects. The most useful combination is the “condition variable
model” involving a mutex and one or more events. The condition variable model is
essential in numerous practical situations and prevents many serious program
race condition defects that occur when programmers do not use Windows synchro-
nization objects, especially events, properly. Events are complex, and their behav-
ior varies depending on the choices illustrated in Table 8–1, so they should be
used according to well-understood models. In fact, even the condition variable
model described here has limitations that we’ll describe.

NT6 (Windows Vista, Windows Server 2008, and Windows 7) added condition
variables to the Windows API, which is a significant advance that will be easy to
understand after we cover the condition variable model. Programmers, however,
will not be able to use condition variables if they need to support NT5 (Windows
XP and Server 2003), which will probably be a requirement for many years after
publication. NT6 condition variables are essential for a totally correct implemen-
tation that overcomes all the event limitations.

Subsequent sections show how to use asynchronous procedure calls (APCs) so
that individual, cooperating threads can be controlled and canceled in an orderly
manner.

Additional performance issues are discussed as appropriate.

ptg

336 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

The Condition Variable Model and Safety Properties

Threaded programs are much easier to develop, understand, and maintain if we
use well-understood and familiar techniques and models. Chapter 7 discussed this
and introduced the boss/worker and work crew models to establish a useful frame-
work for understanding many threaded programs. The critical code region concept
is essential when using mutexes, and it’s also useful to describe the invariants of
your data structure. Finally, even defects have models, as we saw with the dead-
lock example. Note: Microsoft has its own distinct set of models, such as the apart-
ment model and free threading. These terms are most often used with COM.

Using Events and Mutexes Together

The next step is to describe how to use mutexes and events together, generalizing
Program 8–2, where we had the following situation, which will occur over and
over again. Note: This discussion applies to s and SRW locks
as well as to mutexes.

• The mutex and event are both associated with the message block or other data
structure.

• The mutex defines the critical code section for accessing the data structure.

• The event signals that there is a new message or some other significant
change to the data structure.

• Generalizing, the mutex ensures the object’s invariants (or safety properties),
and the event signals that the object has changed state (e.g., a message has
been added or removed from a message buffer), possibly being put into a
known state (e.g., there is at least one message in the message buffer).

• One thread (the producer in Program 8–2) locks the data structure, changes
the object’s state by creating a new message, and signals the event associated
with the fact that there is a new message.

• At least one other thread (the consumer in this example) waits on the event
for the object to reach the desired state. The wait must occur outside the
critical code region so that the producer can access the object.

• A consumer thread can also lock the mutex, test the object’s state (e.g., is there
a new message in the buffer?), and avoid the event wait if the object is already
in the desired state.

This general situation, where one thread changes a state variable and other
threads wait for the change, occurs in numerous situations. The example here

ptg

T H E C O N D I T I O N V A R I A B L E M O D E L A N D S A F E T Y P R O P E R T I E S 337

involves producers, consumers, and message passing; Programs 10–1 and 10–2
provide a different example.

The Condition Variable Model

Now let’s combine all of this into a single code fragment that represents what we
will call the condition variable model (CV model) with two variations, the signal
and broadcast CV models. The first examples use the broadcast variation. The
result is a program model that will occur frequently and can solve a wide variety
of synchronization problems. For convenience, the example is stated in terms of a
producer and a consumer.

The discussion may seem a bit abstract, but once the techniques are under-
stood, we will be able to solve synchronization problems that would be very diffi-
cult without a good model.

The code fragment has several key elements.

• A data structure of type that contains all the data or state
variables such as the messages, checksums, and counters used in Program 8–2.

• A mutex (alternatively, an SRW or) and one or more
events associated with, and usually a part of, the data structure.

• One or more Boolean functions to evaluate the condition variable predicates,
which are the conditions (states) on which a thread might wait. Examples include
“a new message is ready,” “there is available space in the buffer,” and “the queue is
not empty.” A distinct event may be associated with each condition variable
predicate, or one event may be used to represent simply a change of state or a
combination (logical “or”) of several predicates. In the latter case, test individual
predicate functions with the mutex locked to determine the actual state. If the
predicate (logical expression) is simple, there is no need for a separate function.

The following code segment shows a producer and consumer using these principles,
with a single event and condition variable predicate (implemented with a function, ,
that is assumed but not shown). When the producer signals that a desired state has
been reached, the signal should be broadcast to all waiting consumers. For instance, the
producer may have created several messages, and the state is changed by increasing
the message count. In many situations, you want to release only a single thread, as
discussed after the code fragment.

This code segment is designed to operate under all NT kernel versions and
even Windows 9x. will then simplify the solution. We
show this full solution, appropriate for obsolete Windows versions, because:

• The usage pattern is still common in existing programs.

ptg

338 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

• Understanding the segment will make it easier to see the usefulness of
 and NT6 condition variables.

• The usage pattern is still useful when using a in place of
a mutex.

NT6 condition variables will further simplify and improve the solution.
Note and caution: This example deliberately uses , even though

many writers and some of the Microsoft documentation warn against its use (see
the remarks section in the MSDN entry). The ensuing discussion and examples
will justify this choice, but with an additional cautionary note in the

 section. Also, there is a call
with a finite time-out, making the loop a form of polling loop; we show later how to
eliminate the time-out.

ptg

T H E C O N D I T I O N V A R I A B L E M O D E L A N D S A F E T Y P R O P E R T I E S 339

Comments on the Condition Variable Model

The essential feature in the code segment is the loop in the consumer code. The
loop body consists of three steps: (1) unlock the mutex that was locked prior to en-
tering the loop; (2) wait, with a finite time-out, on the event; and (3) lock the mu-
tex again. The event wait time-out is significant, as explained later.

Pthreads, as implemented in many UNIX and other systems, combine these
three steps into a single function, , combining a mutex and
a condition variable (which is similar but not identical to the Windows event).
Windows NT6 condition variables do the same thing. This is the reason for the
term “condition variable model.” There is also a timed version, which allows a
time-out on the event wait.

Importantly, the single Pthreads function implements the first two steps (the
mutex release and event wait) as an atomic operation so that no other thread can
run before the calling thread waits on the event (or condition variable).

The Pthreads designers and the NT6 designers made a wise choice; the two
functions (with and without a time-out) are the only ways to wait on a condition
variable in Pthreads, so a condition variable must always be used with a mutex.
Windows (before NT6) forces you to use two or three separate function calls, and
you need to do it in just the right way to avoid problems.

Another motivation for learning the CV model, besides simplifying programs,
is that it is essential if you ever need to use Pthreads or convert a Pthreads
program to Windows.

Note: Windows NT Version 4.0 introduced a new function,
 (SOAW), that performs the first two steps atomically. The later examples

assume that this function is available, in keeping with the policy established in
Chapter 1. Nonetheless, the CV model introduction does not use SOAW in order to
motivate its later usage, and a few examples have alternative implementations on
the book’s Examples file that use a CS in place of a mutex. (SOAW cannot be used
with a CS.) Appendix C (Table C–6) shows that provides
significant performance advantages.

Using the Condition Variable Model

The CV model, when implemented properly, works as follows in the producer/con-
sumer context.

ptg

340 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

• The producer locks the mutex, changes state, pulses the event when appropri-
ate, and unlocks the mutex. For example, the producer pulses the event when
one or more messages are ready.

• The call should be with the mutex locked so that no other thread
can modify the object, perhaps invalidating the condition variable predicate.

• The consumer tests the condition variable predicate with the mutex locked. If
the predicate holds, there is no need to wait.

• If the predicate does not hold, the consumer must unlock the mutex before
waiting on the event. Otherwise, no thread could ever modify the state and set
the event.

• The event wait must have a time-out just in case the producer pulses the
event in the interval between the mutex release (step 1) and the event wait
(step 2). That is, without the finite time-out, there could be a “lost signal,”
which is another example of a race condition. APCs, described later in this
chapter, can also cause lost signals. The time-out value used in the producer/
consumer segment is a tunable parameter. (See Appendix C for comments on
optimal values.)

• The consumer always retests the predicate after the event wait. Among other
things, this is necessary in case the event wait has timed out. Also, the state
may have changed. For example, the producer may have produced two mes-
sages and then released three waiting consumers, so one of the consumers will
test the state, find no more messages, and wait again. Finally, the retest
protects against spurious wakeups that might result from a thread setting or
pulsing the event without the mutex locked. There is no way to avoid this
time-out and polling loop until we get to and the
Windows NT6 condition variables.

• The consumer always owns the mutex when it leaves the loop, regardless of
whether the loop body was executed.

Condition Variable Model Variations

Notice, first, that the preceding code fragment uses a manual-reset event and calls
 rather than . Is this the correct choice, and could the

event be used differently? The answer is yes to both questions.
Referring back to Table 8–1, we see that the example has the property that

multiple threads will be released. This is correct in this example, where several
messages are produced and there are multiple consuming threads, and we need to
broadcast the change. However, if the producer creates just one message and
there are multiple consuming threads, the event should be auto-reset and the pro-

ptg

T H E C O N D I T I O N V A R I A B L E M O D E L A N D S A F E T Y P R O P E R T I E S 341

ducer should call to ensure that exactly one thread is released. This
variation is the “signal CV” model rather than the “broadcast CV” model. It is still
essential for the released consumer thread, which will then own the mutex and
can remove a message.

Of the four combinations in Table 8–1, two are useful in the CV model. Con-
sidering the other two combinations, auto-reset/ would have the
same effect as auto-reset/ (the signal CV model) because of the time-out,
but the dependence on the time-out would reduce responsiveness. The manual-
reset/ combination causes spurious signals (the condition variable pred-
icate test offers protection, however), because some thread must reset the event,
and there will be a race among the threads before the event is reset.

In summary:

• Auto-reset/ is the signal CV model, which releases a single waiting
thread.

• Manual-reset/ is the broadcast CV model, which releases all
waiting threads.

• Pthreads and NT6 condition variables make the same distinction but do not
require the finite time-out in the event wait for the broadcast model, whereas
the time-out is essential in Windows because the mutex release and event
wait are not performed atomically.

• This will change, however, when we introduce .

An Example Condition Variable Predicate

Consider the condition variable predicate:

In this case, a consumer thread will wait until the count is sufficiently large. This
shows, for example, how to implement a multiple-wait semaphore; recall that nor-
mal semaphores do not have an atomic wait for multiple units. The consumer
thread would then decrement the count by after leaving the loop but before re-
leasing the mutex.

Notice that the broadcast CV model is appropriate in this case because a
single producer may increase the count so as to satisfy several but not all of the
waiting consumers.

ptg

342 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

Semaphores and the Condition Variable Model

In some cases, a semaphore would be appropriate rather than an event, and
semaphores have the advantage of specifying the exact number of threads to be
released. For example, if each consumer were known to consume exactly one
message, the producer could call with the exact number of
messages produced. In the more general case, however, the producer does not
know how the individual consumers will modify the state variable structure, so
the CV model can solve a wider class of problems.

The CV model is powerful enough to implement semaphores. As described
earlier, the basic technique is to define a predicate stating that “the semaphore
count is nonzero” and create a state structure containing the count and maximum
value. Exercise 10–10 shows a complete solution that allows for an atomic wait for
multiple units.

Using

The consumer loop in the preceding code segment is critical to the CV model
because it waits for a state change and then tests to see if the desired state holds.
The state may not hold if the event is too coarse, indicating, for example, that
there was simply some state change, not necessarily the required change.
Furthermore, a different consumer thread might have made some other state
change, such as emptying the message buffer. The loop required two waits and a
mutex release, as follows:

The time-out on the first wait (the event wait) is necessary in order to avoid
missed signals and other potential problems. This code will work if you replace the
mutexes with CSs.

SOAW is an important enhancement that eliminates the need for the time-out
and combines the first two loop statements; that is, the mutex release and the
event wait. In addition to the program simplicity benefit, performance generally
improves because a system call is eliminated and there is no need to tune the wait
time-out period.

ptg

U S I N G 343

This function simplifies the consumer loop, where the two handles are the
mutex and event handles, respectively. There is no event wait time-out because
the calling thread waits on the second handle immediately after the first handle is
signaled (which, in this case, means that the mutex is released). The signal and
wait are atomic so that no other thread can possibly signal the event between the
time that the calling thread releases the mutex and the thread waits on the
second handle. The simplified consumer loop, then, is as follows.

The final argument, , is here but will be set to in the
later sections on APCs.

In general, the two handles can be for any appropriate synchronization
objects. You cannot, however, use a as the signaled object;
kernel objects are necessary.

Many program examples, both in the book and in the Examples file, use
, although some alternative solutions are also included

and are mentioned in the text. If you want to use a instead of
a mutex, use the signal/wait pair in the original code segment and be certain to
have a finite time-out period on the event wait.

The section on APCs shows a different technique to signal waiting threads
with the additional advantage of signaling a specific waiting thread, whereas,
when using events, there is no easy way to control which thread is signaled.

 One More Caution

, used with , appears to implement the
broadcast CV model properly, and it nearly does. The remaining problem is that
the Windows executive can, under some circumstances, preempt a waiting thread

ptg

344 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

(such as one waiting on) just as another thread calls
, resulting in a missed signal and possibly a permanently blocked

thread. This is ’s fatal flaw and the principal reason that MSDN
warns against it.

Unfortunately, it’s frequently necessary to use the CV model (e.g., you need to
port a Pthreads program or you need the underlying functionality). Fortunately,
there are several defenses against this flaw:

• Use a finite time-out with SOAW, treating a time-out as a spurious signal de-
tected when the loop retests the predicate. You could also gain performance
using a CS or an SRW lock rather than a mutex and then wait on the event
with a finite time-out.

• Use the much faster Windows condition variables if you do not need to support
NT5 (Windows XP, etc.).

• Assure that your program never uses the functions that would cause the exec-
utive to preempt a waiting thread. is one such function
and is very rare. However, if you are writing a library, there is no direct way to
assure that the calling program respects such limitations.

• Pulse the event multiple times so that the waiting thread will eventually re-
ceive the signal. This is the approach used in Programs 10–3 and 10–4 where
new messages are generated continuously.

• Avoid the broadcast model, which we can do in Programs 10–4 and 10–5. The
signal model is sufficient if you need to signal only a single thread.

• Program 10–4 uses , but comments after the program describe
variations that do not require it.

Example: A Threshold Barrier Object

Suppose that you wish to have the worker threads wait until there are enough
workers to form a work crew to work in parallel on a task, as in Program 7–1
(). Or, you may want to wait until all threads have finished the first phase
of a parallel computation before proceeding to the next phase. Once the threshold
is reached, all the workers start operation, and if any other workers arrive later,
they do not wait. This problem is solvable with a threshold barrier compound
object.

Programs 10–1 and 10–2 show the implementation of the three functions that
support the threshold barrier compound object. Two of the functions,

 and , manage a .
The threshold number of threads is a parameter to .

ptg

E X A M P L E : A T H R E S H O L D B A R R I E R O B J E C T 345

Program 10–1 shows the appropriate part of the header file, ,
while Program 10–2 shows the implementation of the three functions. Notice that
the barrier object has a mutex, an event, a counter, and a threshold. The condition
variable predicate is documented in the header file—that is, the event is to be set
exactly when the count is greater than or equal to the threshold.

Program 10–1 Part 1—Threshold Barrier Definitions

Program 10–2 now shows the implementation of the three functions. A test
program, , is in the Examples file. Notice how the

 function contains the familiar condition variable loop. Also notice that
the wait function not only waits on the event but also signals the event. The previ-
ous producer/consumer example waited and signaled in separate functions.

Finally, the condition variable predicate is, in this case, persistent. Once it be-
comes true, it will never change, unlike the situation in other examples. This al-
lows a further simplification in . is okay
because there is no need to reset the event, although would also
work and would adhere to the CV model. Later examples do use the CV model.

Program 10–2 Implementing the Threshold Barrier

ptg

346 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

ptg

E X A M P L E : A T H R E S H O L D B A R R I E R O B J E C T 347

Run 10–2 shows the test program, , with command line parameters
to start 10 short-lived threads and a barrier of 5. Each thread prints its start and
stop time, and starts new threads at random intervals averaging one
thread every 1.5 seconds (approximately). The first five threads end at about the
same time immediately after the fifth thread arrives. Later threads end shortly
after they start.

Run 10–2 Testing the Threshold Barrier Functions

ptg

348 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

Comments on the Threshold Barrier Implementation

The threshold barrier object implemented here is limited for simplicity. In general,
we would want to emulate Windows objects more closely by:

• Allowing the object to have security attributes (Chapter 15)

• Allowing the object to be named

• Permitting multiple objects on the object and not destroying it until the
reference count is

• Allowing the object to be shared between processes

The Examples file contains a full implementation of one such object, a
multiple wait semaphore, and the techniques used there can then be used for any
of the objects in this chapter.

A Queue Object

So far, we have associated a single event with each mutex, but in general there might
be more than one condition variable predicate. For example, in implementing a first
in, first out (FIFO) queue, a thread that removes an element from the queue needs to
wait on an event signifying that the queue is not empty, while a thread placing an ele-
ment in the queue must wait until the queue is not full. The solution is to provide two
events, one for each condition. Notice, however, that there is a single mutex.

Program 10–3 shows the definitions of a queue object and its functions. Pro-
grams 10–4 and 10–5 show the queue functions and a program that uses them.

Program 10–3 Part 2—Queue Definitions

ptg

A Q U E U E O B J E C T 349

Program 10–4 shows the functions, such as and
, that are defined at the end of Program 10–3. Notice that and

 provide synchronized access, while and ,
which the first two functions call, are not themselves synchronized and could be
used in a single-threaded program. The first two functions provide for a time-out,
so the normal condition variable model is extended slightly. The time-out parame-
ter is used when the mutex guard is replaced with a .

 and are two other essential functions used to imple-
ment condition variable predicates.

This implementation uses and manual-reset events (the broad-
cast model) so that multiple threads are notified when the queue is not empty or
not full.

A nice feature of the implementation is the symmetry of the and
 functions. Note, for instance, how they use the empty and full predi-

cates and how they use the events. This simplicity is not only pleasing in its own
right, but it also has the very practical benefit of making the code easier to write,
understand, and maintain. The condition variable model enables this simplicity
and its benefits.

Finally, C++ programmers will notice that a synchronized queue class could be
constructed from this code; Exercise 10–7 suggests doing this.

Program 10–4 The Queue Management Functions

ptg

350 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

ptg

A Q U E U E O B J E C T 351

ptg

352 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

Example: Using Queues in a Multistage Pipeline

The boss/worker model, along with its variations, is one popular multithreaded
programming model, and Program 8–2 is a simple producer/consumer model, a
special case of the more general pipeline model.

Another important special case consists of a single boss thread that produces
work items for a limited number of worker threads, placing the work items in a
queue. This message-passing technique can be helpful when creating a scalable
server that has a large number (perhaps thousands) of clients and it is not feasible
to have a worker thread for each client. Chapter 14 discusses the scalable server
problem in the context of I/O completion ports.

In the pipeline model, each thread, or group of threads, does some work on
work items, such as messages, and passes the work items on to other threads for
additional processing. A manufacturing assembly line is analogous to a thread
pipeline. Queues are an ideal mechanism for pipeline implementations.

Program 10–5, , creates multiple production and consumption
stages, and each stage maintains a queue of work to perform. Each queue has a

ptg

E X A M P L E : U S I N G Q U E U E S I N A M U L T I S T A G E P I P E L I N E 353

bounded, finite length. There are three pipeline stages in total connecting the four
work stages. The program structure is as follows.

• Producers create checksummed unit messages periodically, using the same mes-
sage creation function as in Program 8–2, except that each message has a desti-
nation field indicating which consumer thread is to receive the message; each
producer communicates with a single consumer. The number of producer/con-
sumer pairs is a command line parameter. The producer then sends the unit
message to the transmitter thread by placing the message in the transmission
queue. If the queue is full, the producer waits until the queue state changes.

• The transmitter thread gathers all the available unit messages (but, arbi-
trarily, no more than five at a time) and creates a transmission message that
contains a header block with the number of unit messages. The transmitter
then puts each transmission message in the receiver queue, blocking if the
queue is full. The transmitter and receiver might, in general, communicate
over a network connection. The 5:1 blocking factor is easy to adjust.

• The receiver thread processes the unit messages in each transmission mes-
sage, putting each unit message in the appropriate consumer queue if the
queue is not full.

• Each consumer thread receives unit messages as they are available and puts
the message in a log file.

Figure 10–1 shows the system. Notice how it models networking communica-
tion where messages between several sender/receiver pairs are combined and
transmitted over a shared facility.

Figure 10–1 Multistage Pipeline

Q Q

Transmitter Receiver

Consumers

Q

Q

M1

M2

.

.

.

M5

P1

Producers

PN

Message

TO

FROM

DATA

Log

C1

CN

ptg

354 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

Program 10–5 shows the implementation, which uses the queue functions in
Program 10–4. The message generation and display functions are not shown; they
were first seen in Program 8–1. The message blocks are augmented, however, to
contain source and destination fields along with the checksum and data.

One of the complexities in Program 10–5 is forcing all the threads to shut
down in an orderly way without resorting to the very undesirable

 function, as was done in Edition 3. The solution is:

• Producer threads have an argument with the work goal, and the threads ter-
minate after producing the required number of messages followed by a final
“end message” with a negative sequence number.

• The consumer threads also have work goals, and they also look for messages
with a negative sequence number in case the consumer goal does not match
the producer goal.

• The transmitter and receiver threads know the number of consumers and can
decrement the number of active consumers upon processing a message with a
negative sequence. The threads terminate when the count reaches 0.

• The transmitter and receiver also test a global flag. However, it is
impossible to test this flag while waiting for a message. A later solution,

, will use the flag.

Program 10–5 A Multistage Pipeline

ptg

E X A M P L E : U S I N G Q U E U E S I N A M U L T I S T A G E P I P E L I N E 355

ptg

356 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

ptg

E X A M P L E : U S I N G Q U E U E S I N A M U L T I S T A G E P I P E L I N E 357

ptg

358 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

ptg

E X A M P L E : U S I N G Q U E U E S I N A M U L T I S T A G E P I P E L I N E 359

ptg

360 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

Queue Management Function Comments and Performance

Program 10–5 and the queue management functions can be implemented in several
different ways, and the version shown here is actually the slowest and scales poorly
as the thread count increases. The following comments that refer to performance
are based on that data. The Examples file contains several variations, and subse-
quent run screen shots will show the operation and performance.

• , Program 10–5, uses the broadcast model (manual-reset/
) to allow for the general case in which multiple messages may be

requested or created by a single thread. This is the only version subject to the
risk of a missed signal.

• uses a , rather than a mutex, to protect the
queue object. However, you must use an followed by
an event wait rather than with a finite time-out. Two
files provided with the Examples, and ,
implement the queue management functions.

Run 10–5a Mutex Broadcast and Signaling

ptg

E X A M P L E : U S I N G Q U E U E S I N A M U L T I S T A G E P I P E L I N E 361

• does not use ; instead it uses
successive mutex and event waits with a time-out. This corresponds to the
code fragment at the beginning of the chapter.

• uses the signal model (auto-reset/) with
 and will work if only one message is produced at a time,

as is the case in this example. There are significant performance advantages
because only a single thread is released to test the predicate.

• is like , except that it uses a CS in
place of a mutex. It combines the features of and

.

• combines the and
 features.

• uses Windows NT6 condition variables, which are described
later in the chapter.

Run 10–5b CS Broadcast and Signaling

ptg

362 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

Appendix C also shows the comparative performance of these implementations;
the run screen shots here show some initial results.

Run 10–5a compares and with 32 and 64 pro-
ducer/consumer pairs. Both use a mutex, but , which broadcasts, per-
forms poorly and does not scale as we go from 32 to 64 threads.

Run 10–5b makes the same comparison, but with a and a
time-out in the consumer loop. CS performance is much better, as expected, but, again,
the broadcast model does not scale well with the number of producer/consumer pairs.

Windows NT6 Condition Variables

Windows Vista and 2008 Server support condition variable objects whose behavior
is similar to Pthreads condition variables and the CV model we’ve used in this
chapter. Furthermore, Windows condition variables (WCV, a nonstandard but con-
venient abbreviation) use and SRW lock objects (Chapter 8)
rather than mutexes, and the WCV objects are also user, not kernel, objects, pro-
viding additional performance benefits. The only significant limitations are:

• Condition variables cannot be shared between processes the way you can
share named mutexes and events.

• There is nothing comparable to ’s alertable state (see
the upcoming “Asynchronous Procedure Calls” section), so you cannot cancel
threads waiting on condition variables.

First, the type for a WCV object is . Initialize WCVs just
as you would a with the
function. There is no function analogous to

 for the same reason that there is no delete function for SRW
locks.

Use with a to wait for a
signal to a WCV. Be sure to initialize both the CS and the WCV before their first
use. There is a time-out, and the function looks similar to

, except there is no alertable flag.

ptg

W I N D O W S N T 6 C O N D I T I O N V A R I A B L E S 363

 is an alternative, using SRW locks. The pa-
rameters are the same as for , except there is an
additional parameter to indicate whether the SRW lock is in shared or exclusive
mode.

Signal, or “wake up,” a condition variable with
(corresponding to the “signal” model) and (corre-
sponding to the “broadcast” model).

Revising (Program 10–4) is simple. First, modify
(Program 10–3) by replacing the three items with
(for) and (for and). Then,

 is simpler, as there is no need for the additional wait after the SOAW call,
as Program 10–6 shows. Note that there is no need to modify utility functions
such as and .

Program 10–6 implements the signal, rather than the broadcast, version. It also
uses a CS, but the Examples file version uses an SRW lock, so there are illustrations
of both techniques. MSDN’s example code (search for “Using Condition Variables”)
is very similar, also using queues with “not empty” and “not full” predicates.

Program 10–6 The Queue Management Functions

ptg

364 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

ptg

W I N D O W S N T 6 C O N D I T I O N V A R I A B L E S 365

The modified solution, in the Examples file, is , and it does pro-
vide the anticipated performance improvements relative to (the

 solution), as shown in Run 10–6.

ptg

366 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

Asynchronous Procedure Calls

A complexity in (Program 10–5), as it is currently written, is the way
that the transmitter and receiver threads test the message sequence numbers and
track the number of active consumers. This solution assumes that the transmitter
and receiver threads know the number of consumers and understand the message
structure, which may not always be the case. In general, it would be convenient if
the boss thread were able to cancel the transmitter and receiver threads directly.

Another open problem is that there is no general method (other than
) to signal, or cause an action in, a specific thread. Events signal one

thread waiting on an auto-reset event or all the threads waiting on a manual-reset
event, but there is no way to assure that the signal goes to a particular thread.
The solution used so far is simply to wake up all the waiting threads so they can
individually determine whether it is time to proceed. An alternative solution, oc-

Run 10–6 Condition Variable and CS Performance

ptg

Q U E U I N G A S Y N C H R O N O U S P R O C E D U R E C A L L S 367

casionally used, is to assign events to specific threads so that the signaling thread
can determine which event to pulse or set.

APCs provide a solution to both of these problems. The sequence of actions is
as follows, where the boss thread needs to control a cooperating worker or target
thread.

• The boss thread specifies an APC callback routine to be executed by the target
thread by queuing the APC to the target. More than one APC can be queued to
a specific thread.

• The target thread enters an alertable wait state indicating that the thread can
safely execute the APC. The order of these first two steps is irrelevant, so
there is no concern here with race conditions.

• A thread in an alertable wait state will execute all queued APCs, one at a
time.

• An APC can carry out any appropriate action, such as freeing resources or
raising an exception. In this way, the boss thread can cause an exception to
occur in the target, although the exception will not occur until the target has
entered an alertable state.

APC execution is asynchronous in the sense that a boss thread can queue an APC
to a target at any time, but the execution is synchronous in the sense that it can
occur only when the target thread allows it to occur by entering an alertable wait
state. Also notice that APCs give a limited sort of thread pool (see Chapter 9); the
target thread is the “pool,” and the queued functions are the callback functions.

Alertable wait states appear once more in Chapter 14, which covers asynchro-
nous I/O.

The following sections describe the required functions and illustrate their use
with another variation of the program. In the Examples file, the
source file is , and the project to build this version is

.

Queuing Asynchronous Procedure Calls

One thread (the boss) queues an APC to a target thread using .

ptg

368 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

 is a pointer to the actual function that the target thread will execute.
 is the handle of the target thread. is a pointer-sized argument

value that will be passed to the APC function when it is executed.
, in the main function (compare to Program 10–5), uses

 calls to cancel the transmitter and receiver threads after the
consumer and producer threads terminate, as follows:

The return value is nonzero for success or zero for failure.
, however, does not return a useful value, so the

call does not request an error message (the last argument is).
 is an additional queue function, where the argument speci-

fies shutting down the get queue (value 1) or the put queue (value 2). The function
also sets flags that and test, so an APC queued by some
other thread will not inadvertently shut down the queue.

Program 10–7 shows working with modified versions of
 and (Program 10–4). As a result, the queue functions return

nonzero values, causing the transmitter and receiver threads to unblock and exit.

Alertable Wait States

The last parameter, , has been in previ-
ous examples. By using instead, we indicate that the wait is a so-called alertable
wait, and the thread enters an alertable wait state. The behavior is as follows.

ptg

A L E R T A B L E W A I T S T A T E S 369

• If one or more APCs are queued to the thread (as a target thread)
before either (normally an event) is signaled or the time-out
expires, then the APCs are executed (there is no guaranteed order) and

 returns with a return value of .

• If an APC is never queued, then behaves in the
normal way; that is, it waits for the object to be signaled or the time-out period
to expire.

Alterable wait states will be used again with asynchronous I/O (Chapter 14);
the name comes from this usage. A thread can also enter
an alertable wait state with other alertable wait functions such as

, , and , and these
functions will also be useful when performing asynchronous I/O.

We can now modify and (see Program 10–4) to perform
an orderly shutdown after an APC is performed, even though the APC function,

, does not do anything other than print a message and return. All
that is required is to enter an alertable wait state and to test the

 return value, as shown by the following modified queue func-
tions (see in the Examples file).

This version uses the signal CV model with an auto-reset event and ;
there is no need to be concerned with the missed signal issues.

Program 10–7
Queue Functions Modified for Cancellation

ptg

370 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

The APC routine could be either or
, as the receiver and transmitter threads use both and

. If it were necessary for the shutdown functions to know which thread

ptg

S A F E T H R E A D C A N C E L L A T I O N 371

they are executed from, use different APC argument values for the third
 arguments in the code segment preceding Program 10–7.

The thread exit code will be to maintain consistency with
previous versions. A function can perform additional cleanup in a

 function if appropriate.
An alternative to testing the return value for would be

for the shutdown functions to raise an exception, place the body in a try
block, and add an exception handler.

APCs and Missed Signals

A kernel mode APC (used in asynchronous I/O) can momentarily move a waiting
thread out of its wait state, potentially causing a missed signal. Some
documentation warns against for this reason, as discussed earlier in
the “ Another Caution” section. Should there be a situation where a
missed signal could occur, include a finite time-out period on the appropriate wait
calls, or use Windows NT6 condition variables. Better yet, avoid .

Safe Thread Cancellation

The preceding example and discussion show how we can safely cancel a target
thread that uses alertable wait states. Such cancellation is sometimes called syn-
chronous cancellation, despite the use of APCs, because the cancellation, which is
caused by the boss’s call, can only take effect when the target
thread permits cancellation by entering a safe alertable wait state.

Synchronous cancellation requires the target thread to cooperate and allow
itself to be canceled from time to time. Event waits are a natural place to enter an
alertable wait state because, as a system shuts down, the event may never be
signaled again. Mutex waits could also be alertable to allow thread waiting on a
resource that may not become available again. For example, a boss thread could
break deadlocks with this technique.

Asynchronous thread cancellation might appear useful to signal a compute-
bound thread that seldom, if ever, waits for I/O or events. Windows does not allow
asynchronous cancellation, and it would be a risky operation. You do not know the
state of the thread to be canceled and whether it owns locks or other resources.
There are techniques, using processor-specific code, to interrupt a specified thread,
but the techniques not only are risky but are nonportable.

ptg

372 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

Pthreads for Application Portability

Pthreads have been mentioned several times as the alternative threading and syn-
chronization model available with UNIX, Linux, and other non-Windows systems.
There is an open source Windows Pthreads library, and with this library, you can
write portable threaded applications that can run on a wide variety of systems. The
Examples file discusses this subject in more detail. The
project uses the open source library and points to the download site.

Thread Stacks and the Number of Threads

Two more cautions, which are related, are in order. First, give some thought to the
thread stack size, where 1MB is the default. This should be sufficient in most
cases, but if there is any doubt, determine the maximum amount of stack space
each thread will require, including the requirements of any library functions or
recursive functions that the thread calls. A stack overflow will corrupt other
memory or cause an exception.

Second, a large number of threads with large stacks will require large
amounts of virtual memory for the process and could affect paging behavior and
the paging file. For example, using 1,000 threads would not be unreasonable in
some of the examples in this and later chapters. Allowing 1MB per thread stack
results in 1GB of virtual address space. Preventive measures include careful stack
sizing, thread pools, and multiplexing operations within a single thread. Further-
more, parallelism frameworks (previous chapter) generally assure that there are
bounds on the total stack size and task-switching times.

Hints for Designing, Debugging, and Testing

At the risk of presenting advice that is contrary to that given in many other books
and technical articles, which stress testing and little else, my personal advice is to
balance your efforts so that you pay attention to design, implementation, and use
of familiar programming models. The best debugging technique is not to create
the bugs in the first place; this advice, of course, is easier to give than to follow.
Nonetheless, when defects do occur, as they will, code inspection, balanced with
debugging, often is most effective in finding and fixing the defects’ root causes.

Overdependence on testing is not advisable because many serious defects will
elude the most extensive and expensive testing. Testing can only reveal defects; it
cannot prove that they do not exist, and testing shows only defect symptoms, not
root causes. As a personal example, I ran a version of a multiple semaphore wait
function that used the CV model without the finite time-out on the event variable

ptg

H I N T S F O R D E S I G N I N G , D E B U G G I N G , A N D T E S T I N G 373

wait. The defect, which could cause a thread to block indefinitely, did not show up
in over a year of use; eventually, however, something would have failed. Simple
code inspection and knowledge of the condition variable model revealed the error.

Debugging is also problematic because debuggers change timing behavior,
masking the very race conditions that you wish to expose. For example, debugging
is unlikely to find a problem with an incorrect choice of event type (auto-reset or
manual-reset) and / . You have to think carefully about
what you wish to achieve.

Having said all that, testing on a wide variety of platforms, which must in-
clude multiprocessor systems, is an essential part of any multithreaded software
development project.

Avoiding Incorrect Code

Every bug you don’t put in your code in the first place is one more bug you won’t
find in testing or production. Here are some hints, most of which are taken,
although rephrased, from Butenhof ’s Programming with POSIX Threads (PWPT).

• Avoid relying on thread inertia. Threads are asynchronous, but we often
assume, for example, that a parent thread will continue running after creating
one or more child threads. The assumption is that the parent’s “inertia” will
keep it running before the children run. This assumption is especially danger-
ous on a multiprocessor system, but it can also lead to problems on single-
processor systems.

• Never bet on a thread race. Nearly anything can happen in terms of thread
scheduling. Your program has to assume that any ready thread can start
running at any time and that any running thread can be preempted at any
time. “No ordering exists between threads unless you cause ordering” (PWPT,
p. 294).

• Scheduling is not the same as synchronization. Scheduling policy and
priorities cannot ensure proper synchronization. Use synchronization objects
instead.

• Sequence races can occur even when you use locks to protect shared
data. Just because data is protected, there is no assurance as to the order in
which different threads will access the shared data. For example, if one thread
adds money to a bank account and another makes a withdrawal, there is no
assurance, using a lock alone, that the deposit will be made before the with-
drawal. Exercise 10–14 shows how to control thread execution order.

• Cooperate to avoid deadlocks. You need a well-understood lock hierarchy,
used by all threads, to ensure that deadlocks will not occur.

ptg

374 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

• Never share events between predicates. Each event used in a condition
variable implementation should be associated with a distinct predicate. Fur-
thermore, an event should always be used with the same mutex.

• Beware of sharing stacks and related memory corrupters. Always
remember that when you return from a function or when a thread terminates,
memory that is local to the function or thread is no longer valid. Memory on a
thread’s stack can be used by other threads, but you have to be sure that the
first thread continues to exist. This behavior is not unique to thread functions,
of course.

• Be sure to use the storage modifier. Whenever a shared vari-
able can be changed in one thread and accessed in another, the variable
should be to ensure that each thread stores and fetches the vari-
able to and from memory, rather than assuming that the variable is held in a
register that is specific to the thread. However, do not overuse ; any
function call or return will assure that registers are stored; furthermore, every
synchronization call will erect a memory barrier.

• Use memory barriers so that processors have coherent memory views
(see Chapter 8 and Figure 8–2). is not sufficient. Memory barriers
assure that memory accesses issued by the processors are visible in a particu-
lar order.

Here are some additional guidelines and rules of thumb that can be helpful.

• Use the condition variable model properly, being certain not to use two
distinct locks with the same event. Understand the condition variable model
on which you depend. Be certain that the invariant holds before waiting on a
condition variable.

• Understand your invariants and condition variable predicates, even if
they are stated only informally. Be certain that the invariant always holds
outside the critical code section.

• Keep it simple. Multithreaded programming is complex enough without the
burden of additional complex, poorly understood thread models and logic. If a
program becomes overly complex, assess whether the complexity is really
necessary or is the result of poor design. Careful use of standard threading
models can simplify your program and make it easier to understand, and lack
of a good model may be a symptom of a poorly designed program.

• Test on both single-processor and multiprocessor systems and on
systems with different clock rates, cache architectures, and other
characteristics. Some defects will never, or rarely, show up on a single-

ptg

S U M M A R Y 375

processor system but will occur immediately on a multiprocessor system, and
conversely. Likewise, a variety of system characteristics helps ensure that a
defective program has more opportunity to fail.

• Testing is necessary but not sufficient to ensure correct behavior.
There have been a number of examples of programs, known to be defective,
that seldom fail in routine or even extensive tests.

• Be humble. After all these precautions, bugs will still occur. This is true even
with single-threaded programs; threads simply give us more, different, and
very interesting ways to cause problems. This adage has been proved many
times in preparing this book, where several reviewers and I found bugs (not
always subtle bugs, either) in the example programs.

Beyond the Windows API

We have intentionally limited coverage to the Windows API. Microsoft does, how-
ever, provide additional access to kernel objects, such as threads. For example, the
.NET class, accessible through C++, C#, and other languages, allows
you to create a pool of threads and to queue work items to the threads (the

 method is).
Microsoft also implements the Microsoft Message Queuing (MSMQ) service,

which provides messaging services between networked systems. The examples in
this chapter should help show the value of a general-purpose message queuing
system. MSMQ is documented in MSDN.

Summary

Multithreaded program development is much simpler if you use well-understood
and familiar programming models and techniques. This chapter has shown the
utility of the condition variable model and has solved several relatively complex
but important programming problems. APCs allow one thread to signal and cause
actions in another thread, which allows thread cancellation so that all threads in
a system can shut down properly.

Synchronization and thread management are complex because there are
multiple ways to solve a given problem, and the different techniques involve
complexity and performance trade-offs. The three-stage pipeline example was
implemented several different ways in order to illustrate the options.

Use of careful program design and implementation is the best way to improve
program quality. Overdependence on testing and debugging, without attention to
detail, can lead to serious problems that may be very difficult to detect and fix.

ptg

376 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

Looking Ahead

Chapter 11 introduces interprocess communication using Windows proprietary
anonymous and named pipes. The named pipe example programs show a
multithreaded server that can process requests from multiple networked clients.
Chapter 12 then converts the example to sockets, which are an industry standard
and allow interoperability with Linux, UNIX, and other systems.

Additional Reading

David Butenhof ’s Programming with POSIX Threads was the source of much of the
information and programming guidelines at the end of the chapter. The threshold
barrier solution, Programs 10–1 and 10–2, was adapted from Butenhof as well.

“Strategies for Implementing POSIX Condition Variables in Win32,” by
Douglas Schmidt and Irfan Pyarali (posted at http://www.cs.wustl.edu/~schmidt/
win32-cv-1.html), discusses Windows event limitations along with condition
variables emulation, thoroughly analyzing and evaluating several approaches.
Reading this paper will increase your appreciation of the new functions. Another
paper by the same authors (http://www.cs.wustl.edu/~schmidt/win32-cv-2.html)
builds object-oriented wrappers around Windows synchronization objects to
achieve a platform-independent synchronization interface. The open source
Pthreads implementation, which is based on the Schmidt and Pyarali work, is
available at http://sources.redhat.com/pthreads-win32/.

Exercises

10–1. Revise Program 10–1 so that it does not use the
function.

10–2. Modify (Program 8–2) so that there can be multiple consumers
and so that it uses the condition variable model. Which event type is
appropriate?

10–3. Change the logic in Program 10–2 so that the event is signaled only once.

10–4. Replace the mutex in the queue object used in Program 10–2 with a CS.
What are the effects on performance and throughput? The solution is in
the Examples file, and Appendix C contains experimental data.

10–5. Program 10–4 uses the broadcast CV model to indicate when the queue is
either not empty or not full. Would the signal CV model work? Would the
signal model even be preferable in any way? Appendix C contains
experimental data.

http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
http://www.cs.wustl.edu/~schmidt/win32-cv-2.html
http://sources.redhat.com/pthreads-win32/

ptg

E X E R C I S E S 377

10–6. Experiment with the queue lengths and the transmitter-receiver blocking
factor in Program 10–5 to determine the effects on performance,
throughput, and CPU load.

10–7. For C++ programmers: The code in Programs 10–3 and 10–4 could be used
to create a synchronized queue class in C++; create this class and modify
Program 10–5 to test it. Which of the functions should be public and which
should be private?

10–8. Study the performance behavior of Program 10–5 if s
are used instead of mutexes.

10–9. Improve Program 10–5 so that it is not necessary to terminate the
transmitter and receiver threads. The threads should shut themselves
down.

10–10. The Examples file contains , which implements a multiple-
wait semaphore modeled after the Windows objects (they can be named,
secured, and process shared, and there are two wait models), and

 is a test program. Build and test this program. How
does it use the CV model? Is performance improved by using a

 or Windows condition variable? What are the
invariants and condition variable predicates?

10–11. Illustrate the various guidelines at the end of this chapter in terms of bugs
you have encountered or in the defective versions of the programs
provided in the Examples file.

10–12. Read “Strategies for Implementing POSIX Condition Variables in Win32”
by Schmidt and Pyarali (see the Additional Reading section). Apply their
fairness, correctness, serialization, and other analyses to the CV models
(called “idioms” in their paper) in this chapter. Notice that this chapter
does not directly emulate condition variables; rather, it tackles the easier
problem of emulating normal condition variable usage, whereas Schmidt
and Pyarali emulate condition variables used in an arbitrary context.

10–13. Convert one of Chapter 9’s programs to create a thread pool
using APCs.

10–14. Two projects in the Examples file, and ,
show alternative solutions to the problem of serializing thread execution.
The code comments give background and acknowledgments. The second
solution associates a unique event with each thread so that specific
threads can be signaled. The implementation uses C++ in order to take
advantage of the C++ Standard Template Library (STL). Compare and

ptg

378 C H A P T E R 1 0 A D V A N C E D T H R E A D S Y N C H R O N I Z A T I O N

contrast these two solutions, and use the second as a means to become
familiar with the STL.

10–15. Perform tests to compare NT6 condition variable performance with the
other implementations.

10–16. Modify (which implements the message queue
management functions with condition variables) so that it uses SRW (slim
reader/writer) locks. Test with and compare performance
with the original implementation. Further modify the implementation to
use thread pooling.

ptg

379

C H A P T E R

11 Interprocess
Communication

Chapter 6 showed how to create and manage processes, and Chapters 7 to 10
showed how to manage and synchronize threads within processes. So far, how-
ever, we have not been able to perform direct process-to-process communication
other than through shared memory (Chapter 5).

The next step is to provide sequential interprocess communication (IPC) be-
tween processes1 using filelike objects. Two primary Windows mechanisms for
IPC are the anonymous pipe and the named pipe, both of which are accessed with
the familiar and functions. Simple anonymous pipes are
character-based and half-duplex. As such, they are well suited for redirecting the
output of one program to the input of another, as is common with communicating
Linux and UNIX programs. The first example shows how to do this with Windows
anonymous pipes.

Named pipes are much more powerful than anonymous pipes. They are full-
duplex and message-oriented, and they allow networked communication. Further-
more, there can be multiple open handles on the same pipe. These capabilities,
coupled with convenient transaction-oriented named pipe functions, make named
pipes appropriate for creating client/server systems. This capability is shown in
this chapter’s second example, a multithreaded client/server command processor,
modeled after Figure 7–1, which was used to introduce threads. Each server
thread manages communication with a different client, and each thread/client
pair uses a distinct handle, or named pipe instance. Mailslots, which allow for
one-to-many message broadcasting and are also filelike, are used to help clients
locate servers.

1 The Windows system services also allow processes to communicate through mapped files, as demon-
strated in the semaphore exercise in Chapter 10 (Exercise 10–10). Additional mechanisms for IPC in-
clude files, sockets, remote procedure calls, COM, and message posting. Chapter 12 describes sockets.

ptg

380 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

Anonymous Pipes

Windows anonymous pipes allow one-way (half-duplex), byte-based IPC. Each pipe
has two handles: a read handle and a write handle. The function is:

The pipe handles are often inheritable; the next example shows the reasons.
, the pipe byte size, is only a suggestion, and specifies the default value.

In order to use the pipe for IPC, there must be another process, and that
process requires one of the pipe handles. Assume that the parent process, which
calls , wishes to write data for a child to use. The problem, then, is to
communicate the read handle () to the child. The parent achieves this by
setting the child procedure’s input handle in the start-up structure to
(see Chapter 6 for process management and the start-up structure).

Reading a pipe read handle will block if the pipe is empty. Otherwise, the read
will accept as many bytes as are in the pipe, up to the number specified in the

 call. A write operation to a full pipe, which is implemented in a mem-
ory buffer, will also block.

Finally, anonymous pipes are one-way. Two pipes are required for bi-
directional communication.

Example: I/O Redirection Using an Anonymous Pipe

Program 11–1 shows a parent process, , that creates two processes from
the command line and pipes them together. The parent process sets up the pipe
and redirects standard input and output. Notice how the anonymous pipe handles
are inheritable and how standard I/O is redirected to the two child processes;
these techniques were described in Chapter 6.

The location of in on the right side of Figure 11–1
assumes that the program reads a large amount of data, processes it, and then
writes out results. Alternatively, the write could be inside the loop, putting out
results after each read.

Close the pipe and thread handles at the earliest possible point. Figure 11–1
does not show the handle closings, but Program 11–1 does. The parent should

ptg

E X A M P L E : I / O R E D I R E C T I O N U S I N G A N A N O N Y M O U S P I P E 381

close the standard output handle immediately after creating the first child process
so that the second process will be able to recognize an end of file when the first
process terminates. If there were still an open handle, the second process might
not terminate because the application would not indicate an end of file.

Program 11–1 uses an unusual syntax; the sign is the pipe symbol separat-
ing the two commands. The vertical bar () would conflict with the command
processor. Figure 11–1 schematically shows the execution of the command:

In UNIX or at the Windows command prompt, the corresponding command
would be:

Program 11–1 Interprocess Communication

Figure 11–1 Process-to-Process Communication Using an Anonymous Pipe

CreatePipe (&hRead, &hWrite);
StartUp.hStdOutput = hWrite;
CreateProcess ("Program1");
StartUp.hStdInput = hRead;
CreateProcess ("Program2");
WaitForMultipleObjects;

Redirect

hIn = CreateFile (argv [1]);

(STD_OUTPUT_HANDLE);
while () {

ReadFile (hIn. . .);
WriteFile (hWrite. . .);

}
ExitProcess (0);

hRead = GetStdHandle
(STD_INPUT_HANDLE);

hOut = CreateFile (argv [2]);
while () {

ReadFile (hRead);
}
WriteFile (hOut);

Program 1 Program 2

Pipe

hWrite = GetStdHandle

ptg

382 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

ptg

E X A M P L E : I / O R E D I R E C T I O N U S I N G A N A N O N Y M O U S P I P E 383

Run 11–1 shows output from , Chapter 7’s multithreaded pattern
search program piped to , which is a similar Windows command. While this
may seem a bit artificial, is the book’s only sample program that accepts stan-
dard input, and it also shows that works with third-party programs
that accept standard input.

These examples search the presidents and monarchs files, first used in Chapter 6,
for individuals named “James” and “George” who lived in any part of the eighteenth
century (the search is not entirely accurate) or “William” who lived in any part of the
nineteenth century. The file names were shortened to decrease the horizontal space.

Run 11–1 Using an Anonymous Pipe

ptg

384 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

Named Pipes

Named pipes have several features that make them an appropriate general-purpose
mechanism for implementing IPC-based applications, including networked file access
and client/server systems,2 although anonymous pipes remain a good choice for sim-
ple byte-stream IPC, such as the preceding example, where communication is within
a single computer. Named pipe features (some are optional) include the following.

• Named pipes are message-oriented, so the reading process can read varying-
length messages precisely as sent by the writing process.

• Named pipes are bidirectional, so two processes can exchange messages over
the same pipe.

• There can be multiple, independent instances of pipes with the same name. For
example, several clients can communicate concurrently with a single server
using distinct instances of a named pipe. Each client can have its own named
pipe instance, and the server can respond to a client using the same instance.

• Networked clients can access the pipe by name. Named pipe communication is
the same whether the two processes are on the same machine or on different
machines.

• Several convenience and connection functions simplify named pipe request/
response interaction and client/server connection.

Named pipes are generally preferable to anonymous pipes, although Program
11–1 and Figure 11–1 did illustrate a situation in which anonymous pipes are
useful. Use named pipes any time your communication channel needs to be
bidirectional, message-oriented, networked, or available to multiple client
processes. The upcoming examples could not be implemented using anonymous
pipes.

Using Named Pipes

 creates the first instance of a named pipe and returns a han-
dle. The function also specifies the pipe’s maximum number of instances and,
hence, the number of clients that can be supported simultaneously.

2 This statement requires a major qualification. Windows Sockets (Chapter 12) is the preferred API for
most networking applications and higher-level protocols (http, ftp, and so on), especially where TCP/
IP-based interoperability with non-Windows systems is required. Many developers prefer to limit
named pipe usage to IPC within a single computer or to communication within Windows networks.

ptg

N A M E D P I P E S 385

Normally, the creating process is regarded as the server. Client processes,
possibly on other systems, open the pipe with .

Figure 11–2 shows an illustrative client/server relationship, and the
pseudocode shows one scheme for using named pipes. Notice that the server
creates multiple instances of the same pipe, each of which can support a client.
The server also creates a thread for each named pipe instance, so that each client
has a dedicated thread and named pipe instance. Figure 11–2, then, shows how to
implement the multithreaded server model of Figure 7–1.

Creating Named Pipes

Here is the specification of the function.

Figure 11–2 Clients and Servers Using Named Pipes

ptg

386 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

Parameters

 indicates the pipe name, which must be of the form:

The period () stands for the local machine; thus, you cannot create a pipe on a re-
mote machine. The pipename is case-insensitive, can be up to 256 characters long,
and can contain any character other than backslash.

 specifies several flags; the important ones for our purposes are:

• One of three mutually exclusive data flow description flags
, , or . The value de-

termines the combination of and from the
server’s perspective. Thus, gives the server

 access, and the client must use when connect-
ing with . If the access is , data flows bidirec-
tionally, and the client can specify , , or both.

• enables asynchronous I/O (Chapter 14).

The mode can also specify (not used with message
pipes), , and more (see MSDN).

 has three mutually exclusive flag pairs. They indicate whether
writing is message-oriented or byte-oriented, whether reading is by messages or
blocks, and whether read operations block.

• and indicate whether data is written
to the pipe as a stream of bytes or messages. Use the same type value for all
pipe instances with the same name.

• and indicate whether
data is read as a stream of bytes or messages.
requires .

• and determine whether will block. Use
 because there are better ways to achieve asynchronous I/O.

 determines the maximum number of pipe instances. As
Figure 11–2 shows, use this same value for every call for a
given pipe. Use the value to have Windows base
the number on available computer resources.

 and give the sizes, in bytes, of the input
and output buffers used for the named pipes. Specify to get default values.

ptg

N A M E D P I P E S 387

 is a default time-out period (in milliseconds) for the
 function, which is discussed in an upcoming section. This situation, in

which the create function specifies a time-out for a related function, is unique.
The error return value is because pipe handles are

similar to file handles.
 operates as in all the other create functions.

The first call actually creates the named pipe and an in-
stance. Closing the last handle to an instance will delete the instance (usually,
there is only one handle per instance). Closing the last instance of a named pipe
will delete the pipe, making the pipe name available for reuse.

Named Pipe Client Connections

Figure 11–2 shows that a client connects to a named pipe using with
the pipe name. In many cases, the client and server are on the same machine, and
the name would take this form:

If the server is on a different machine, the name would take this form:

Using the name period () when the server is local—rather than using the local
machine name—delivers significantly better connection-time performance.

Named Pipe Status Functions

There are seven functions to interrogate pipe status information, and an eighth
sets state information. They are mentioned briefly, and Program 11–3 demon-
strates several of the functions.

• returns information, given an open handle, on
whether the pipe is in blocking or nonblocking mode, whether it is message-
oriented or byte-oriented, the number of pipe instances, and so on.

• allows the program to set the same state
attributes. The mode and other values are passed by address rather than by
value, which is necessary so that a value specifies that the mode should
not be changed. See the full Examples code of Program 11–2 for an example.

ptg

388 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

• determines whether the handle is for a client or server
instance, the buffer sizes, and so on.

• Five functions get information about the client name and the client and server
session ID and process ID. Representative names are

 and .

Named Pipe Connection Functions

The server, after creating a named pipe instance, can wait for a client connection
(or , described in a subsequent function) using

.

With set to , will return as soon as there
is a client connection. Normally, the return value is . However, it would be if
the client connected between the server’s call and the

 call. In this case, returns , and
the connection is valid despite the return value.

Following the return from , the server can read requests
using and write responses using . Finally, the server should
call to free the handle (pipe instance) for connection with
another client.

, the final function, is for use by the client to synchronize
connections to the server. The call will return successfully as soon as the server
has a pending call. By using , the client can
be certain that the server is ready for a connection and the client can then call

. Nonetheless, the client’s call could fail if some other
client opens the named pipe using or if the server closes the instance
handle; that is, there is a race involving the server and the clients. The server’s

e call will not fail. Notice that there is a time-out period for
 that, if specified, will override the time-out period specified with

the server’s call.

ptg

N A M E D P I P E S 389

Client and Server Named Pipe Connection

The proper connection sequences for the client and server are as follows. First is
the server sequence, in which the server makes a client connection, communicates
with the client until the client disconnects (causing to return),
disconnects the server-side connection, and then connects to another client.

The client connection sequence is as follows, where the client terminates after
it finishes, allowing another client to connect on the same named pipe instance. As
shown, the client can connect to a networked server if it knows the server name.

Notice the race conditions between the client and the server. First, the client’s
 call will fail if the server has not yet created the named pipe; the

failure test is omitted for brevity but is included in the sample programs in the
Examples file. Next, the client may, in rare circumstances, complete its

 call before the server calls . In that case,
 will return to the server, but the named pipe communication

will still function properly.

ptg

390 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

The named pipe instance is a global resource, so once the client disconnects,
another client can connect with the server.

Named Pipe Transaction Functions

Figure 11–2 shows a typical client configuration in which the client does the
following:

• Opens an instance of the pipe, creating a long-lived connection to the server
and consuming a pipe instance

• Repetitively sends requests and waits for responses

• Closes the connection

The common , sequence could be regarded as a single
client transaction, and Windows provides such a function for message pipes.

The parameter usage is clear because this function combines and
 on the named pipe handle. Both the output and input buffers are

specified, and receives the message length. Overlapped operations
(Chapter 14) are possible. More typically, the function waits for the response.

 is convenient, but, as in Figure 11–2, it requires a
permanent connection, which limits the number of clients.3

 is the second client convenience function:

3 Note that is more than a mere convenience compared with and
 and can provide some performance advantages. One experiment shows throughput en-

hancements ranging from 57% (small messages) to 24% (large messages).

ptg

N A M E D P I P E T R A N S A C T I O N F U N C T I O N S 391

 does not require a permanent connection; instead, it makes a
temporary connection by combining the following complete sequence:

into a single function. The benefit is that clients do not have long-lived connec-
tions, and the server can service more clients at the cost of per-request connection
overhead.

The parameter usage is similar to that of except that a
pipe name, rather than a handle, specifies the pipe. is
synchronous (there is no overlapped structure). It specifies a time-out period, in
milliseconds, for the connection but not for the transaction. There are three
special values for :

•

•

• , which uses the default time-out period
specified by

Peeking at Named Pipe Messages

In addition to reading a named pipe using , you can also determine
whether there is actually a message to read using . This is useful
to poll the named pipe (an inefficient operation), determine the message length so

ptg

392 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

as to allocate a buffer before reading, or look at the incoming data so as to prioritize
its processing.

 nondestructively reads any bytes or messages in the pipe,
but it does not block; it returns immediately.

Test to determine whether there is data in the pipe; if there is,
 will be greater than . and can be , but if

you need to look at the data, call a second time with a buffer and
count large enough to receive the data (based on the value). If a
buffer is specified with and , then will tell
whether there are leftover message bytes that could not fit into the buffer, allow-
ing you to allocate a large buffer before reading from the named pipe. This value is

 for a byte mode pipe.
Again, reads nondestructively, so a subsequent is

required to remove messages or bytes from the pipe.

The UNIX FIFO is similar to a named pipe, thus allowing communication between
unrelated processes. There are limitations compared with Windows named pipes.

• FIFOs are half-duplex.

• FIFOs are limited to a single machine.

• FIFOs are still byte-oriented, so it is easiest to use fixed-size records in cli-
ent/server applications. Nonetheless, individual read and write operations
are atomic.

A server using FIFOs must use a separate FIFO for each client’s response, al-
though all clients can send requests to a single, well-known FIFO. A common
practice is for the client to include a FIFO name in a connect request.

The UNIX function is a limited version of .

If the clients and server are to be networked, use sockets or a similar transport mecha-
nism. Sockets are full-duplex, but there must still be one separate connection per client.

ptg

E X A M P L E : A C L I E N T / S E R V E R C O M M A N D L I N E P R O C E S S O R 393

Example: A Client/Server Command Line Processor

Everything required to build a request/response client/server system is now
available. This example is a command line server that executes a command on
behalf of the client. Features of the system include:

• Multiple clients can interact with the server.

• The clients can be on different systems on the network, although the clients
can also be on the server machine.

• The server is multithreaded, with a thread dedicated to each named pipe
instance. That is, there is a thread pool of worker threads4 ready for use by
connecting clients. Worker threads are allocated to a client on the basis of the
named pipe instance that the system allocates to the client.

• The individual server threads process a single request at a time, simplifying
concurrency control. Each thread handles its own requests independently.
Nonetheless, exercise the normal precautions if different server threads are
accessing the same file or other resource.

Program 11–2 shows the single-threaded client, and its server is Program 11–3.
The server corresponds to the model in Figures 7–1 and 11–2. The client request is
simply the command line. The server response is the resulting output, which is sent
in several messages. The programs also use the include file ,
which is included in the Examples file, and defines the request and response data
structures as well as the client and server pipe names.

The client in Program 11–2 also calls a function, , which finds
a server pipe by name. uses a mailslot, described in a later section
and shown in Program 11–5.

The defined records have length fields; this is done to emphasize the
field size.

Program 11–2 Named Pipe Connection-Oriented Client

4 This application-managed thread pool is different from the NT6 thread pool (see Chapter 10).

ptg

394 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

ptg

E X A M P L E : A C L I E N T / S E R V E R C O M M A N D L I N E P R O C E S S O R 395

Program 11–3 is the server program, including the server thread function,
that processes the requests from Program 11–2. The server also creates a “server
broadcast” thread (see Program 11–4) to broadcast its pipe name on a mailslot to
clients that want to connect. Program 11–2 calls the function,
shown in Program 11–5, which reads the information sent by this process.
Mailslots are described later in this chapter.

While the code is omitted in Program 11–4, the server (in the Examples file)
optionally secures its named pipe to prevent access by unauthorized clients.
Chapter 15 describes object security and how to use this option. Also, see the
example for the server process shutdown logic.

Program 11–3 Multithreaded Named Pipe Server Program

ptg

396 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

ptg

E X A M P L E : A C L I E N T / S E R V E R C O M M A N D L I N E P R O C E S S O R 397

ptg

398 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

ptg

C O M M E N T S O N T H E C L I E N T / S E R V E R C O M M A N D L I N E P R O C E S S O R 399

Comments on the Client/Server
Command Line Processor

This solution includes a number of features as well as limitations that will be
addressed in later chapters.

• Multiple client processes can connect with the server and perform concurrent
requests; each client has a dedicated server (or worker) thread allocated from
the thread pool.

• The server and clients can run from separate command prompts or can run
under control of (Program 6–3).

• If all the named pipe instances are in use when a client attempts to connect,
the new client will wait until a different client disconnects on receiving a

 command, making a pipe instance available for another client. Several
new clients may be attempting to connect concurrently and will race to open
the available instance; threads that lose this race will need to wait again.

• Each server thread performs synchronous I/O, but some server threads can be
processing requests while others are waiting for connections or client
requests.

ptg

400 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

• Extension to networked clients is straightforward, subject to the limitations of
named pipes discussed earlier in this chapter. Simply change the pipe names
in the header file or add a client command line parameter for the server name.

• Each server worker thread creates a simple connection thread, which calls
 and terminates as soon as a client connects. This allows

a worker thread to wait, with a time-out, on the connection thread handle and
test the global shutdown flag periodically. If the worker threads blocked on

, they could not test the flag and the server could not shut
down. For this reason, the server thread performs a on the
named pipe in order to force the connection thread to resume and shut down.
Asynchronous I/O (Chapter 14) is an alternative, so that an event could be
associated with the call. The comments in the Examples
file source provide additional alternatives and information. Without this
solution, connection threads might never terminate by themselves, resulting
in resource leaks. Chapter 12 discusses this subject.

• There are a number of opportunities to enhance the system. For example, there
could be an option to execute an in-process server by using a DLL that imple-
ments some of the commands. This enhancement is added in Chapter 12.

• The number of server threads is limited by the call
in the main thread. While this limitation is easily overcome, the system here is
not truly scalable; too many threads will impair performance, as we saw in
Chapter 10. Chapter 14 uses asynchronous I/O ports to address this issue.

Running the Client and Server

The details of how clients locate servers are explained in the next section
(“Mailslots”). However, we can now show the programs in operation. Run 11–3
shows the server, Program 11–3, which was started using from

Run 11–3 Servicing Several Clients

ptg

M A I L S L O T S 401

Chapter 6. The server accepts connections from three client processes, reporting
the connections and the commands.

Run 11–4 shows one of the clients in operation; this is the client represented by
process ID 15872 in Run 11–3. The commands are familiar from previous chapters.

Mailslots

A Windows mailslot, like a named pipe, has a name that unrelated processes can
use for communication. Mailslots are a broadcast mechanism, similar to data-
grams (see Chapter 12), and behave differently from named pipes, making them
useful in some important but limited situations. Here are the significant mailslot
characteristics:

Run 11–4 Client Commands and Results

ptg

402 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

• A mailslot is one-directional.

• A mailslot can have multiple writers and multiple readers, but frequently it
will be one-to-many of one form or the other.

• A writer (client) does not know for certain that all, some, or any readers
(servers) actually received the message.

• Mailslots can be located over a network domain.

• Message lengths are limited.

Using a mailslot requires the following operations.

• Each server creates a mailslot handle with .

• The server then waits to receive a mailslot message with a call.

• A write-only client should open the mailslot with and write
messages with . The open will fail (name not found) if there are no
waiting readers.

A client’s message can be read by all servers; all of them receive the same
message.

There is one further possibility. The client, in performing the ,
can specify a name of this form:

In this way, the acts as a wildcard, and the client can locate every server in the do-
main, a networked group of systems assigned a common name by the network admin-
istrator. The client can then connect to one of the servers, assuming that they all
provide the same basic functionality, although the server responses could contain in-
formation (current load, performance, etc.) that would influence the client’s choice.

Using Mailslots

The preceding client/server command processor suggests several ways that
mailslots might be useful. Here is one scenario that will solve the server location
problem in the preceding client/server system (Programs 11–2 and 11–3).

The application server, acting as a mailslot client, periodically broadcasts its
name and a named pipe name. Any application client that wants to find a server
can receive this name by being a mailslot server. In a similar manner, the
command line server can periodically broadcast its status, including information
such as utilization, to the clients. This situation could be described as a single

ptg

M A I L S L O T S 403

writer (the mailslot client) and multiple readers (the mailslot servers). If there
were multiple mailslot clients (that is, multiple application servers), there would
be a many-to-many situation.

Alternatively, a single reader could receive messages from numerous writers,
perhaps giving their status—that is, there would be multiple writers and a single
reader. This usage, for example, in a bulletin board application, justifies the term
mailslot. These first two uses—name and status broadcast—can be combined so
that a client can select the most appropriate server.

The inversion of the terms client and server is confusing in this context, but
notice that both named pipe and mailslot servers perform the
(or calls, while the client (named pipe or mailslot) connects
using . Also, in both cases, the client performs the first
and the server performs the first .

Figure 11–3 shows the use of mailslots for the first approach.

Figure 11–3 Clients Using a Mailslot to Locate a Server

·
·
·

Mailslot Client

Application Server

while (...) {
Sleep (...);
hMS = CreateFile

("*\mailslot\status");

· · ·

WriteFile (hMS, &StatusInformation)

}

Application Client 0

hMS = CreateMailslot
("\\.\mailslot\status");

ReadFile (hMS, &ServerStatus)

/* Connect to this Server */

Application Client N

hMS = CreateMailslot
("\\.\mailslot\status");

ReadFile (hMS, &ServerStatus)

/* Connect to this Server */

Mailslot Servers
This Message Is

Sent Periodically

ptg

404 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

Creating and Opening a Mailslot

The mailslot servers (readers) use to create a mailslot and to
get a handle for use with . There can be only one mailslot of a given
name on a specific machine, but several systems in a network can use the same
name to take advantage of mailslots in a multireader situation.

Parameters

 points to a mailslot name of this form:

The name must be unique. The period () indicates that the mailslot is created on
the current machine. The path, if any, represents a pseudo directory, and path
components are separated by backslash characters.

 is the maximum size (in bytes) for messages that a client can write.
A value of means no limit.

 is the number of milliseconds that a read operation will wait.
A value of causes an immediate return, and is an
infinite wait (no time-out).

The client (writer), when opening a mailslot with , can use the
following name forms.

\\.\mailslot\[path]name specifies a local mailslot.

\\computername\mailslot\[path]name specifies a mailslot on a
specified machine.

\\domainname\mailslot\[path]name specifies all mailslots on ma-
chines in the domain. In this case, the maximum message length is
424 bytes.

*\mailslot\[path]name specifies all mailslots on machines in the
domain. In this case, the maximum message length is also 424
bytes.

Finally, the client must specify the flag.
The functions and are similar to their

named pipe counterparts.

UNIX does not have a facility comparable to mailslots. A broadcast or multicast
TCP/IP datagram, however, could be used for this purpose.

ptg

P I P E A N D M A I L S L O T C R E A T I O N , C O N N E C T I O N , A N D N A M I N G 405

Pipe and Mailslot Creation, Connection, and Naming

Table 11–1 summarizes the valid pipe names that can be used by application
clients and servers. It also summarizes the functions to create and connect with
named pipes.

Table 11–2 gives similar information for mailslots. Recall that the mailslot
client (or server) may not be the same process or even on the same computer as
the application client (or server).

Table 11–1 Named Pipes: Creating, Connecting, and Naming

Application Client Application Server

Named Pipe
Handle or
Connection

,

Pipe
Name

 (pipe is local)
(pipe is created locally)

(pipe is local or remote)

Table 11–2 Mailslots: Creating, Connecting, and Naming

Mailslot Client Mailslot Server

Mailslot
Handle

Mailslot
Name

 (mailslot is local)
(mailslot is created locally)

(mailslot is on a specific remote system)

(all domain mailslots with this name)

(all mailslots with this name)

ptg

406 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

Example: A Server That Clients Can Locate

Program 11–4 shows the thread function that the command line server (Program
11–3), acting as a mailslot client, uses to broadcast its pipe name to waiting clients.
There can be multiple servers with different characteristics and pipe names, and
the clients obtain their names from the well-known mailslot name. Program 11–3
starts this function as a thread.

Note: In practice, many client/server systems invert the location logic used
here. The alternative is to have the application client also act as the mailslot
client and broadcast a message requesting a server to respond on a specified
named pipe; the client determines the pipe name and includes that name in the
message. The application server, acting as a mailslot server, then reads the
request and creates a connection on the specified named pipe.

Program 11–4’s inverted logic solution has advantages, although it consumes
a mailslot name:

• The latency time to discover a server decreases because there is no need to
wait for a server to broadcast its name.

• Network bandwidth and CPU cycles are used only as required when a client
needs to discover a server.

Program 11–4 Mailslot Client Thread Function

ptg

E X A M P L E : A S E R V E R T H A T C L I E N T S C A N L O C A T E 407

}

Program 11–5 shows the function called by the client (see Program
11–2) so that it can locate the server.

Program 11–5 Mailslot Server

ptg

408 C H A P T E R 1 1 I N T E R P R O C E S S C O M M U N I C A T I O N

Summary

Windows pipes and mailslots, which are accessed with file I/O operations, provide
stream-oriented interprocess and networked communication. The examples show
how to pipe data from one process to another and a simple, multithreaded client/
server system. Pipes also provide another thread synchronization method because
a reading thread blocks until another thread writes to the pipe.

Looking Ahead

Chapter 12 shows how to use industry-standard, rather than Windows propri-
etary, interprocess and networking communication. The same client/server sys-
tem, with some server enhancements, will be rewritten to use the standard
methods.

Exercises

11–1. Carry out experiments to determine the accuracy of the performance
advantages cited for . You will need to make some
changes to the server code as given. Also compare the results with the
current implementation.

11–2. Use the program from Chapter 6 to start the server and several
clients, where each client is created using the “detached” option. Eventually,
shut down the server by sending a console control event through the
command. Can you suggest any improvements to the shutdown
logic so that a connected server thread can test the shutdown flag while
blocked waiting for a client request? Hint: Create a read thread similar to
the connection thread.

11–3. Enhance the server so that the name of its named pipe is an argument on
the command line. Bring up multiple server processes with different pipe

ptg

E X E R C I S E S 409

names using the job management programs in Chapter 6. Verify that
multiple clients simultaneously access this multiprocess server system.

11–4. Run the client and server on different systems to confirm correct network
operation. Modify (Program 11–4) so that it includes the server
machine name in the named pipe. Also, modify the mailslot name, cur-
rently hard-coded in Program 11–4, so that the name is taken from the
mailslot response from the application server.

11–5. Modify the server so that you measure the server’s utilization. (In other
words, what percentage of elapsed time is spent in the server?) Maintain
performance information and report this information to the client on
request. Consider using the field to hold the
information.

11–6. Enhance the server location programs so that the client will find the
server with the lowest utilization rate.

11–7. is designed to run indefinitely as a server, allowing clients to
connect, obtain services, and disconnect. When a client disconnects, it is
important for the server to free all associated resources, such as memory,
file handles, and thread handles. Any remaining resource leaks will
ultimately exhaust computer resources, causing the server to fail, and
before failure there will probably be significant performance degradation.
Carefully examine to ensure that there are no resource leaks,
and, if you find any, fix them. (Also, please inform the author using the
e-mail address in the preface.) Note: Resource leaks are a common and
serious defect in many production systems. No “industry-strength” quality
assurance effort is complete if it has not addressed this issue.

11–8. Extended exercise: Synchronization objects can synchronize threads in
different processes on the same machine, but they cannot synchronize
threads running in processes on different machines. Use named pipes and
mailslots to create emulated mutexes, events, and semaphores to
overcome this limitation.

ptg

This page intentionally left blank

ptg

411

C H A P T E R

12 Network
Programming
with Windows
Sockets

Named pipes and mailslots are suitable for interprocess communication between
processes on the same computer or processes on Windows computers connected by
a local or wide area network. The client/server application system developed in
Chapter 11, starting with Program 11–2, demonstrated these capabilities.

Named pipes and mailslots (both simply referred to here as “named pipes”
unless the distinction is important) have the distinct drawback, however, of not
being an industry standard. Therefore, programs such as those in Chapter 11 will
not port easily to non-Windows machines, nor will they interoperate with non-
Windows machines. This is the case even though named pipes are protocol-
independent and can run over industry-standard protocols such as TCP/IP.

Windows provides interoperability by supporting Windows Sockets, which are
nearly the same as, and interoperable with, Berkeley Sockets, a de facto industry
standard. This chapter shows how to use the Windows Sockets (or “Winsock”) API
by modifying Chapter 11’s client/server system. The resulting system can operate
over TCP/IP-based wide area networks, and the server, for instance, can accept
requests from UNIX, Linux, and other non-Windows clients.

Readers who are familiar with Berkeley Sockets may want to proceed directly to
the programming examples, which not only use sockets but also show new server fea-
tures and additional thread-safe library techniques.

Winsock, by enabling standards-based interoperability, allows programmers
to exploit higher-level protocols and applications, such as ftp, http, RPCs, and
COM, all of which provide different, and higher-level, models for standard,
interoperable, networked interprocess communication.

ptg

412 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

In this chapter, the client/server system is a vehicle for demonstrating Win-
sock, and, in the course of modifying the server, interesting new features are
added. In particular, DLL entry points (Chapter 5) and in-process DLL servers are
used for the first time. (These new features could have been incorporated in the
initial Chapter 11 version, but doing so would have distracted from the develop-
ment and understanding of the basic system architecture.) Finally, additional
examples show how to create reentrant thread-safe libraries.

Winsock, because of conformance to industry standards, has naming conven-
tions and programming characteristics somewhat different from the Windows func-
tions described so far. The Winsock API is not strictly a part of the Windows API.
Winsock also provides additional functions that are not part of the standard; these
functions are used only as absolutely required. Among other advantages, programs
will be more portable to other operating systems.

Windows Sockets

The Winsock API was developed as an extension of the Berkeley Sockets API into
the Windows environment, and all Windows versions support Winsock. Winsock’s
benefits include the following.

• Porting code already written for Berkeley Sockets is straightforward.

• Windows machines easily integrate into TCP/IP networks, both IPv4 and
IPv6. IPv6, among other features, allows for longer IP addresses, overcoming
the 4-byte address limit of IPv4.

• Sockets can be used with Windows overlapped I/O (Chapter 14), which, among
other things, allows servers to scale when there is a large number of active cli-
ents.

• Sockets can be treated as file s for use with , ,
and, with some limitations, other Windows functions, just as UNIX allows
sockets to be used as file descriptors. This capability is convenient whenever
there is a need to use asynchronous I/O and I/O completion ports (Chapter 14).

• Windows provides nonportable extensions.

• Sockets can support protocols other than TCP/IP, but this chapter assumes
TCP/IP. See MSDN if you use some other protocol, particularly Asynchronous
Transfer Mode (ATM).

ptg

W I N D O W S S O C K E T S 413

Winsock Initialization

The Winsock API is supported by a DLL () that can be accessed by
linking with your program (these names do not change on 64-bit ma-
chines). The DLL needs to be initialized with a nonstandard, Winsock-specific
function, , which must be the first Winsock function a program calls.

 should be called when the program no longer needs to use Winsock
functionality. Note: The prefix denotes “Windows Sockets asynchronous. . . .”
The asynchronous capabilities will not be used here because we’ll use threads for
asynchronous operation.

 and , while always required, may be the only non-
standard functions you will use. A common practice is to use statements
to test the macro (normally defined from Visual Studio) so that the
functions are called only if you are building on Windows. This approach assumes,
of course, that the rest of your code is platform-independent.

Parameters

 indicates the highest version of the Winsock DLL that you
need and can use. Nonetheless, Version 2.x is available on all current Windows
versions, and the examples use 2.0.

The return value is nonzero if the DLL cannot support the version you want.
The low byte of specifies the major version, and the high

byte specifies the minor version, which is the opposite of what you might expect. The
 macro is usually used; thus, represents Version 2.0.

 points to a structure that returns information on the
configuration of the DLL, including the highest version available. The Visual
Studio on-line help shows how to interpret the results.

 can be used to get the error; also works
but is not entirely reliable. The Examples file socket programs use

, a variation that uses .
When a program has completed or no longer needs to use sockets, it should

call so that , the sockets DLL, can free resources
allocated for this process.

ptg

414 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

Creating a Socket

Once the Winsock DLL is initialized, you can use the standard (i.e., Berkeley
Sockets) functions to create sockets and connect for client/server or peer-to-peer
communication.

A Winsock data type is analogous to the Windows and can
even be used with and other Windows functions requiring a .
Call the function in order to create (or open) a and return its
value.

Parameters

The type is actually defined as an , so UNIX code will port without the
necessity of using the Windows type definitions.

 denotes the address family, or protocol; use (or , which
has the same value but is more properly used with the call) to designate IP
(the Internet protocol component of TCP/IP).

 specifies connection-oriented () or datagram communica-
tions (), slightly analogous to named pipes and mailslots, respectively.

 is unnecessary when is ; use .
 returns on failure.

You can use Winsock with protocols other than TCP/IP by specifying different
protocol values; we will use only TCP/IP.

, like all the other standard functions, does not use uppercase letters
in the function name. This is a departure from the Windows convention and is due
to the need to conform to industry standards.

Socket Server Functions

In this discussion, a server is a process that accepts connections on a specified
port. While sockets, like named pipes, can be used for peer-to-peer communication,
this distinction is convenient and reflects the manner in which two machines
connect to one another.

Unless specifically mentioned, the socket type will always be in
the examples. is described later in this chapter.

ptg

S O C K E T S E R V E R F U N C T I O N S 415

Binding a Socket

A server should first create a socket (using) and then “bind” the socket to
its address and endpoint (the communication path from the application to a ser-
vice). The call, followed by the , is analogous to creating a named
pipe. There is, however, no name to distinguish sockets on a given machine. A port
number is used instead as the service endpoint. A given server can have multiple
endpoints. The function is shown here.

Parameters

 is an unbound returned by .
, filled in before the call, specifies the protocol and protocol-specific

information, as described next. The port number is part of this structure.
 is .

The return value is normally or in case of error. The
 structure is defined as follows.

The first member, , is the protocol. The second member, ,
is protocol-specific. The Internet version of is , and we
use in the examples.

ptg

416 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

Note the use of a short integer for the port number. The port number and other
information must also be in the proper byte order, big-endian, so as to allow inter-
operability. The member has a submember, , which is filled in
with the familiar 4-byte IP address, such as , to indicate the machine
from which connections will be accepted. Normally, applications accept connections
from any machine, so the value is common, although this symbolic
value must be converted to the correct form, as in the next code fragment.

Use the function to convert a known IP address text string (use
 characters, not Unicode) into the required form so that you can initialize the

 member of a variable, as follows:

A bound socket, with a protocol, port number, and IP address, is sometimes
said to be a named socket.

Putting a Bound Socket into the Listening State

 makes a server socket available for client connection. There is no
analogous named pipe function.

 indicates the number of connection requests you are willing to
have queued at the socket. There is no upper bound in Winsock Version 2.0.

ptg

S O C K E T S E R V E R F U N C T I O N S 417

Accepting a Client Connection

Finally, a server can wait for a client to connect, using the function, which
returns a new connected socket for use in the I/O operations. Notice that the origi-
nal socket, now in the listening state, is used solely as an parameter and
is not used directly for I/O.

 blocks until a client connection request arrives, and then it returns the
new I/O socket. It is possible to make a socket be nonblocking (see MSDN), but the
server (Program 12–2) uses a separate accepting thread so that the server does not
block. Call after the socket is placed in the listening state with calls to
and .

Parameters

, the first argument, is the listening socket.
 points to a structure that gives the address of the

client machine.
 points to a variable that will receive the length of the returned
 structure. In itialize this variable to

 before the call.

Disconnecting and Closing Sockets

Disconnect a socket using

where s is the value returned by . The value indicates if you want to
disconnect send operations (), receive operations (), or both
(). The effects of shutting down sending and/or receiving are:

• or — Subsequent calls will fail and the sender will
send a (no more data from the sender). You cannot re-enable sending on
the socket.

ptg

418 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

• or — Subsequent calls will fail and the sender
will send a FIN (no more data from the sender). Any queued data or data that
arrives later is lost. There is no way to re-enable receiving on the socket.

 does not close the socket or free its resources, but it does assure
that all data is sent or received before the socket is closed. Nonetheless, an appli-
cation should not reuse a socket after calling .

If you shut down a socket for sending only, you can still receive, so if there is
possibility of more data, call until it returns 0 bytes. Once there is no more
data, shut down receiving. If there is a socket error, then a clean disconnect is im-
possible.

Likewise, if you shut down a socket for receiving only, you can still send re-
maining data. For example, a server might stop receiving requests while it still
has response or other data to transmit before shutting down sending.

Once you are finished with a socket, you can close it with

The server first closes the socket created by , not the listening .
The server should not close the listening socket until the server shuts down or will
no longer accept client connections. Even if you are treating a socket as a
and using and , alone will not destroy the
socket; use .

Example: Preparing for and Accepting a Client Connection

The following code fragment shows how to create a socket and then accept client
connections. This example uses two standard functions, (“host to network
short”) and (“host to network long”), that convert integers to big-endian
form, as IP requires.1

The server port can be any unassigned short integer. Well-known ports (0–
1023) and registered ports (1024–49151, with some exceptions) should not be used
for your server. Select a port from the an unassigned range such as 48557–48618,
48620–49150, or 49152 and above. However, check www.iana.org/assignments/
port-numbers to be certain that your port number is currently unassigned. You
may also find that the port you select is in use by some other process on your com-
puter, so you’ll need to make another selection. The examples use ,
defined in as .

1 Windows supports little-endian, and and perform the required conversion. The func-
tions are implemented on non-Windows machines to behave as required by the machine architecture.

www.iana.org/assignments/

ptg

S O C K E T C L I E N T F U N C T I O N S 419

Socket Client Functions

A client station wishing to connect to a server must also create a socket with the
 function. The next step is to connect with a server, specifying a port, host

address, and other information. There is just one additional function, .

Connecting to a Server

If there is a server with a listening socket, the client can connect with the
function.

Parameters

 is a socket created with the function.

ptg

420 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

 points to a structure that has been initialized with the
port number and IP address of a machine with a socket, bound to the specified
port, that is in listening mode.

Initialize with .
A return value of indicates a successful connection, whereas

indicates failure, possibly because there is no listening socket at the specified address.

Example: Client Connecting to a Server

The following code sequence allows a client to connect to a server. Just two
function calls are required, but be certain to initialize the address structure before
the call. Error testing is omitted here but should be included in actual
programs. In the example, assume that the IP address (a text string such as

) is given in on the command line.

Sending and Receiving Data

Socket programs exchange data using and , which have nearly identical ar-
gument forms (the buffer has the modifier). Only is shown here.

The return value is the actual number of bytes transmitted. An error is
indicated by the return value .

ptg

C O M P A R I N G N A M E D P I P E S A N D S O C K E T S 421

 can be used to indicate urgency (such as out-of-band data), and the
 flag can be used to look at incoming data without reading it.

The most important fact to remember is that and are not atomic,
and there is no assurance that all the requested data has been received or sent.
“Short sends” are extremely rare but possible, as are “short receives.” There is no
concept of a message as with named pipes; therefore, you need to test the return
value and resend or transmit until all data has been transmitted.

You can also use and with sockets by casting the socket
to a in the function call.

Comparing Named Pipes and Sockets

Named pipes, described in Chapter 11, are very similar to sockets, but there are
significant usage differences.

• Named pipes can be message-oriented, which can simplify programs.

• Named pipes require and , whereas sockets can also
use and .

• Sockets, unlike named pipes, are flexible so that a user can select the protocol
to use with a socket, such as TCP or UDP. The user can also select protocols
based on quality of service and other factors.

• Sockets are based on an industry standard, allowing interoperability with
non-Windows machines.

There are also differences in the server and client programming models.

Comparing Named Pipe and Socket Servers

When using sockets, call repetitively to connect to multiple clients. Each
call will return a different connected socket. Note the following differences
relative to named pipes.

• Named pipes require you to create each named pipe instance with
. creates the socket instances.

• There is no upper bound on the number of socket clients (limits only
the number of queued clients), but there can be a limit on the number of
named pipe instances, depending on the first call to .

• There are no socket convenience functions comparable to .

ptg

422 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

• Named pipes do not have explicit port numbers and are distinguished by name.

A named pipe server requires two function calls (and
) to obtain a usable , whereas socket servers require

four function calls (, , , and).

Comparing Named Pipes and Socket Clients

Named pipes use followed by . The socket sequence
is in the opposite order because the function can be regarded as the
creation function, while is the blocking function.

An additional distinction is that is a socket client function, while the
similarly named is a server function.

Example: A Socket Message Receive Function

It is frequently convenient to send and receive messages as a single unit. Named
pipes can do this, as shown in Chapter 11. Sockets, however, require that you
provide a mechanism to specify and determine message boundaries. One common
method is to create a message header with a length field, followed by the message
itself, and we’ll use message headers in the following examples. Later examples
use a different technique, end-of-string null characters, to mark message
boundaries. Fixed-length messages provide yet another solution.

The following function, , receives message length headers
and message bodies. The function is similar.

Notice that the message is received in two parts: the header and the contents.
The user-defined type with a 4-byte message length header is:

Even the 4-byte header requires repetitive calls to ensure that it is read
in its entirety because is not atomic.

Note: The message length variables are fixed-precision type to remind
readers that the length, which is included in messages that may be transferred to
and from programs written in other languages (such as Java) or running on other
machines, where long integers may be 64 bits, will have a well-defined,
unambiguous length.

ptg

E X A M P L E : A S O C K E T - B A S E D C L I E N T 423

nRemainRecv = min(nRemainRecv, MAX_RQRS_LEN);

Example: A Socket-Based Client

Program 12–1 reimplements the client program, which in named pipe form is
Program 11–2, . The conversion is straightforward, with several small
differences.

• Rather than locating a server using mailslots, the user enters the IP address
on the command line. If the IP address is not specified, the default address is

, which indicates the current machine.

• Functions for sending and receiving messages, such as , are
used but are not shown here.

ptg

424 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

• The port number, , is defined in the header file,
.

While the code is written for Windows, there are no Windows dependencies other
than the calls.

Comment: The programs in this chapter do not use generic characters. This is a
simplification driven by the fact that does not accept Unicode strings.

Program 12–1 Socket-Based Client

ptg

E X A M P L E : A S O C K E T - B A S E D C L I E N T 425

Running the Socket Client

The socket server is complex with long program listings. Therefore, Run 12–1 shows
the client in operation, assuming that there is a running server. The commands are
familiar, and operation is very similar to Chapter 11’s named pipe client.

Run 12–1 Socket Client Operation

ptg

426 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

Example: A Socket-Based Server with New Features

, Program 12–2, is similar to , Program 11–3, but there are
several changes and improvements.

• Rather than creating a fixed-size thread pool, we now create server threads on
demand. Every time the server accepts a client connection, it creates a server
worker thread, and the thread terminates when the client quits.

• The server creates a separate accept thread so that the main thread can poll
the global shutdown flag while the call is blocked. While it is possible
to specify nonblocking sockets, threads provide a convenient and uniform
solution. It’s worth noting that a lot of the extended Winsock functionality is
designed to support asynchronous operation, and Windows threads allow you
to use the much simpler and more standard synchronous socket functionality.

• The thread management is improved, at the cost of some complexity, so that
the state of each thread is maintained.

• This server also supports in-process servers by loading a DLL during initial-
ization. The DLL name is a command line option, and the server thread first
tries to locate an entry point in the DLL. If successful, the server thread calls
the DLL entry point; otherwise, the server creates a process, as in .
A sample DLL is shown in Program 12–4. The DLL needs to be trusted, how-
ever, because any unhandled exception could crash or corrupt the server, as
would changes to the environment.

In-process servers could have been included in if desired. The
biggest advantage of in-process servers is that no context switch to a different
process is required, potentially improving performance. The disadvantage is that
the DLL runs in the server process and could corrupt the server, as described in
the last bullet. Therefore, use only trusted DLLs.

The server code is Windows-specific, unlike the client, due to thread manage-
ment and other Windows dependencies.

The Main Program

Program 12–2 shows the main program and the thread to accept client connec-
tions. It also includes some global declarations and definitions, including an enu-
merated type, , used by each individual server thread.

Program 12–3 shows the server thread function; there is one instance for each
connected client. The server state can change in both the main program and the
server thread.

ptg

E X A M P L E : A S O C K E T - B A S E D S E R V E R W I T H N E W F E A T U R E S 427

The server state logic involves both the boss and server threads. Exercise 12–6
suggests an alternative approach where the boss is not involved.

Program 12–2 Socket-Based Server with In-Process Servers

ptg

428 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

ptg

E X A M P L E : A S O C K E T - B A S E D S E R V E R W I T H N E W F E A T U R E S 429

ptg

430 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

ptg

E X A M P L E : A S O C K E T - B A S E D S E R V E R W I T H N E W F E A T U R E S 431

The Server Thread

Program 12–3 shows the socket server thread function. There are many similari-
ties to the named pipe server function, and some code is elided for simplicity. Also,
the code uses some of the global declarations and definitions from Program 12–2.

Program 12–3 : Server Thread Code

ptg

432 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

ptg

E X A M P L E : A S O C K E T - B A S E D S E R V E R W I T H N E W F E A T U R E S 433

Running the Socket Server

Run 12–3 shows the server in operation, with several printed information mes-
sages that are not in the listings for Programs 12–2 and 12–3. The server has sev-
eral clients, one of which is the client shown in Run 12–1 (slot 0).

The termination at the end occurs in the accept thread; the shutdown closes
the socket, causing the call to fail. An exercise suggests ways to make this
shutdown cleaner.

Run 12–3 Requests from Several Clients

ptg

434 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

A Security Note

This client/server system, as presented, is not secure. If you are running the
server on your computer and someone else knows the port and your computer
name, your computer is at risk. The other user, running the client, can run com-
mands on your computer that could, for example, delete or modify files.

A complete discussion of security solutions is well beyond this book’s scope.
Nonetheless, Chapter 15 shows how to secure Windows objects, and Exercise 12–15
suggests using Secure Sockets Layer (SSL).

In-Process Servers

As mentioned previously, in-process servers are a major enhancement in
. Program 12–4 shows how to write a DLL to provide these services. Two famil-

iar functions are shown, a word counting function and a function.
By convention, the first parameter is the command line, while the second is

the name of the output file. Beyond that, always remember that the function will
execute in the same thread as the server thread, so there are strict requirements
for thread safety, including but not limited to the following:

• The functions should not change the process environment in any way. For
example, if one of the functions changes the working directory, that change
will affect the entire process.

• Similarly, the functions should not redirect standard input or output.

• Programming errors, such as allowing a subscript or pointer to go out of
bounds or the stack to overflow, could corrupt another thread or the server
process itself. More generally, the function should not generate any unhandled
exception because the server will not be able to do anything other than shut
down.

• Resource leaks, such as failing to deallocate memory or to close handles, will
ultimately affect the server application.

Processes do not have such stringent requirements because a process cannot normally
corrupt other processes, and resources are freed when the process terminates. A
typical development methodology, then, is to develop and debug a service as a process,
and when it is judged to be reliable, convert it to a DLL.

Program 12–4 shows a small DLL library with two simple functions, and
 which have functionality from programs in previous chapters. The

code is in C, avoiding C++ decorated names. These examples do not support Uni-
code as currently written.

ptg

I N - P R O C E S S S E R V E R S 435

Program 12–4 Sample In-Process Servers

ptg

436 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

Line-Oriented Messages, DLL Entry Points, and TLS

 and communicate using messages, where each message is
composed of a 4-byte length header followed by the message content. A common
alternative to this approach is to have the messages delimited by null characters.

ptg

E X A M P L E : A T H R E A D - S A F E D L L F O R S O C K E T M E S S A G E S 437

The difficulty with delimited messages is that there is no way to know the mes-
sage length in advance, and each incoming character must be examined. Receiving a
single character at a time would be inefficient, however, so incoming characters are
stored in a buffer, and the buffer contents might include one or more null characters
and parts of one or more messages. Buffer contents and state must be retained be-
tween calls to the message receive function. In a single-threaded environment, static
storage can be used, but multiple threads cannot share the same static storage.

In more general terms, we have a multithreaded persistent state problem. This
problem occurs any time a thread-safe function must maintain information from one
call to the next. The Standard C library function, which scans a string for suc-
cessive instances of a token, is a common alternative example of this problem.

Solving the Multithreaded Persistent State Problem

The first of this chapter’s two solutions to the persistent state problem uses a com-
bination of the following components.

• A DLL for the message send and receive functions.

• An entry point function in the DLL.

• Thread Local Storage (TLS, Chapter 7). The DLL index is created when the
process attaches, and it is destroyed when the process detaches. The index
number is stored in static storage to be accessed by all the threads.

• A structure containing a buffer and its current state. A structure is allocated
every time a thread attaches, and the address is stored in the TLS entry for
that thread. A thread’s structure is deallocated when the thread detaches.

• This solution does have a significant limitation; you can only use one socket
with this library per thread. The second solution, later in the chapter, over-
comes this limitation.

The TLS, then, plays the role of static storage, and each thread has its own unique
copy of the static storage.

Example: A Thread-Safe DLL for Socket Messages

Program 12–5 is the DLL containing two character string (“ ” in names in this
example) or socket streaming functions: and

, along with a entry point (see Chapter 5). These two functions
are similar to and essentially replace , listed earlier in this
chapter, and the functions used in Programs 12–1 and 12–2.

ptg

438 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

The function is a representative solution of a multithreaded persistent
state problem, and it combines TLS and DLLs. The resource deallocation in the

 case is especially important in a server environment; without
it, the server would eventually exhaust resources, typically resulting in either
failure or performance degradation or both. Note: This example illustrates concepts
that are not directly related to sockets, but it is included here, rather than in earlier
chapters, because this is a convenient place to illustrate thread-safe DLL tech-
niques in a realistic example.

If this DLL is to be loaded dynamically, you must load it before starting any
threads that use the DLL; otherwise, there will not be a call
to .

The Examples file contains client and server code, slightly modified from Pro-
grams 12–1 and 12–2, that uses this DLL.

Program 12–5 Thread-Safe DLL

ptg

E X A M P L E : A T H R E A D - S A F E D L L F O R S O C K E T M E S S A G E S 439

ptg

440 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

ptg

E X A M P L E : A T H R E A D - S A F E D L L F O R S O C K E T M E S S A G E S 441

Comments on the DLL and Thread Safety

• , with , is called whenever a new thread is cre-
ated, but there is not a distinct call for the primary
thread or any other threads that exist when the DLL is loaded. The DLL’s

 case must handle these cases.

• In general, and even in this case (consider the thread), some threads
may not require the allocated memory, but cannot distinguish the
different thread types. Therefore, the case does not

ptg

442 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

actually allocate any memory, and there is no need to call be-
cause Windows initializes the value to . The entry
point allocates the memory the first time it is called. In this way, the thread-
specific memory is allocated only by threads that require it, and different
thread types can allocate exactly the resources they require.

• While this DLL is thread-safe, a given thread can use these routines with only
one socket at a time because the persistent state is associated with the thread,
not the socket. The next example addresses this issue.

• The DLL source code on the Examples file is instrumented to print the total
number of calls by type.

• There is still a resource leak risk, even with this solution. Some threads, such as
the accept thread, may never terminate and therefore will never be detached
from the DLL. will call with
but not with for threads that are still active. This does
not cause a problem in this case because the accept thread does not allocate any
resources, and even memory is freed when the process terminates. There would,
however, be an issue if threads allocated resources such as temporary files; the
ultimate solution would be to create a globally accessible list of resources. The

 code would then have the task of scanning the list and
deallocating the resources; this is left as an exercise.

Example: An Alternative Thread-Safe DLL Strategy

Program 12–5, while typical of the way in which TLS and are combined
to create thread-safe libraries, has two major weaknesses noted in the comments
in the previous section. First, the state is associated with the thread rather than
with the socket, so a given thread can process only one socket at a time. Second,
there is the resource leak risk mentioned in the last bullet above.

An effective alternative approach to thread-safe library functions is to create a
handle-like structure that is passed to every function call. The state is then main-
tained in the structure. The application explicitly manages the state, so you can
manage multiple sockets in a thread, and you can even use the sockets with fibers
(there might be one socket, or more, per fiber). Many UNIX and Linux applica-
tions use this technique to create thread-safe C libraries; the main disadvantage
is that the functions require an additional parameter for the state structure.

Program 12–6 modifies Program 12–5. Notice that is not necessary,
but there are two new functions to initialize and free the state structure. The send
and receive functions require only minimal changes. An associated server,

, is included in the Examples file and requires only slight changes in
order to create and close the socket handle (denotes “handle”).

ptg

E X A M P L E : A N A L T E R N A T I V E T H R E A D - S A F E D L L S T R A T E G Y 443

Program 12–6 Thread-Safe DLL with a State Structure

ptg

444 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

ptg

D A T A G R A M S 445

Datagrams

Datagrams are similar to mailslots and are used in similar circumstances. There
is no connection between the sender and receiver, and there can be multiple re-
ceivers. Delivery to the receiver is not ensured with either mailslots or datagrams,
and successive messages will not necessarily be received in the order they were
sent.

The first step in using datagrams is to specify in the field
when creating the socket with the function.

ptg

446 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

Next, use and , which take the same arguments as
and , but add two arguments to designate the partner station. Thus, the

 function is as follows.

 points to an address structure where you can specify the
name of a specific machine and port, or you can specify that the datagram is to be
broadcast to multiple computers; see the next section.

When using , you specify the computers (perhaps all) from which
you are willing to accept datagrams; also see the next section.

As with mailslots, datagram messages should be short; MSDN recommends
512 as the length limit for the data portion, as that limit avoids having the mes-
sage sent in fragments.

Datagram Broadcasting

Several steps are necessary to broadcast messages to multiple computers.
Here are the basic steps; see MSDN for complete details:

• Set the socket options by calling , specifying the
 option. Also, set this option for sockets that are to receive

broadcast messages.

• Set the client’s value to .

• Set the port number as in the preceding examples.

• The broadcasts will be sent to and received by all computer interfaces (that is,
all computers with a datagram socket with the option) to that
port.

ptg

O V E R L A P P E D I / O W I T H W I N D O W S S O C K E T S 447

Using Datagrams for Remote Procedure Calls

A common datagram usage is to implement RPCs. Essentially, in the most common
situation, a client sends a request to a server using a datagram. Because delivery is
not ensured, the client will retransmit the request if a response, also using a
datagram, is not received from the server after a wait period. The server must be
prepared to receive the same request several times.

The important point is that the RPC client and server do not require the
overhead of a stream socket connection; instead, they communicate with simple
requests and responses. As an option, the RPC implementation ensures reliability
through time-outs and retransmissions, simplifying the application program.
Alternatively, the client and server are frequently implemented so as to use
stateless protocol (they do not maintain any state information about previous
messages), so each request is independent of other requests. Again, application
design and implementation logic are greatly simplified.

Berkeley Sockets versus Windows Sockets

Programs that use standard Berkeley Sockets calls will port to Windows Sockets,
with the following important exceptions.

• You must call to initialize the Winsock DLL.

• You must use (which is not portable), rather than , to
close a socket.

• You must call to shut down the DLL.

Optionally, you can use the Windows data types such as and in
place of , as was done in this chapter. Programs 12–1 and 12–2 were ported
from UNIX, and the effort was minimal. It was necessary, however, to modify the
DLL and process management sections. Exercise 12–12 suggests that you port
these two programs back to UNIX.

Overlapped I/O with Windows Sockets

Chapter 14 describes asynchronous I/O, which allows a thread to continue run-
ning while an I/O operation is in process. Sockets with Windows asynchronous I/O
are discussed in that chapter.

Most asynchronous programming can be achieved uniformly and easily using
threads. For example, uses an accept thread rather than a nonblocking

ptg

448 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

socket. Nonetheless, I/O completion ports, which are associated with asynchro-
nous I/O, are important for scalability when there is a large number of clients.
This topic is also described in Chapter 14, and Chapter 9 discussed the same situ-
ation in the context of NT6 thread pools.

Windows Sockets Additional Features

Windows Sockets 2 adds several areas of functionality, including those listed here.

• Standardized support for overlapped I/O (see Chapter 14). This is considered
to be the most important enhancement.

• Scatter/gather I/O (sending and receiving from noncontiguous buffers in
memory).

• The ability to request quality of service (speed and reliability of transmission).

• The ability to organize sockets into groups. The quality of service of a socket
group can be configured, so it does not have to be done on a socket-by-socket
basis. Also, the sockets belonging to a group can be prioritized.

• Piggybacking of data onto connection requests.

• Multipoint connections (comparable to conference calls).

Summary

Windows Sockets allows the use of an industry-standard API, so that your
programs can be interoperable and nearly portable in source code form. Winsock
is capable of supporting nearly any network protocol, but TCP/IP is the most
common.

Winsock is comparable to named pipes (and mailslots) in both functionality
and performance, but portability and interoperability are important reasons for
considering sockets. Keep in mind that socket I/O is not atomic, so it is necessary
to ensure that a complete message is transmitted.

This chapter covered the Winsock essentials, which are enough to build a work-
able client/server application system. There is, however, much more, including
asynchronous usage; see the Additional Reading references for more information.

This chapter also provided examples of using DLLs for in-process servers and
for creating thread-safe libraries.

ptg

E X E R C I S E S 449

Looking Ahead

Chapters 11 and 12 have shown how to develop servers that respond to client
requests. Servers, in various forms, are common Windows applications. Chapter 13
describes Windows Services, which provide a standard way to create and manage
servers, in the form of services, permitting automated service start-up, shutdown,
and monitoring. Chapter 13 shows how to turn a server into a manageable service.

Additional Reading

Windows Sockets

Network Programming for Microsoft Windows by Jim Ohlund is a good Winsock
reference.

Berkeley Sockets and TCP/IP

W. R. Stevens’s TCP/IP Illustrated, Volume 3, covers sockets and much more,
while the first two volumes in the series describe the protocols and their imple-
mentation. The same author’s UNIX Network Programming provides comprehen-
sive coverage that is valuable even for non-UNIX machines. Another reference is
Michael Donahoo and Kenneth Calvert, TCP/IP Sockets in C: Practical Guide for
Programmers.

Exercises

12–1. Use to determine the highest and lowest Winsock version
numbers supported on the machines accessible to you.

12–2. Use the program from Chapter 6 to start the server and several
clients, where each client is created using the “detached” option. Eventu-
ally, shut down the server by sending a console control event through the

 command. Can you suggest any improvements in the
shutdown logic?

12–3. Modify the client and server programs (Programs 12–1 and 12–2) so that
they use datagrams to locate a server. The mailslot solution in Chapter 11
could be used as a starting point.

12–4. Modify the named pipe server in Chapter 11 (Program 11–3) so that it cre-
ates threads on demand instead of a server thread pool. Rather than pre-
defining a fixed maximum for the number of named pipe instances, allow
the application to determine the maximum.

ptg

450 C H A P T E R 1 2 N E T W O R K P R O G R A M M I N G W I T H W I N D O W S S O C K E T S

12–5. Perform experiments to determine whether in-process servers are faster
than out-of-process servers. For example, you can use the word count ex-
ample (Program 12–4); there is an executable program as well as the
DLL function shown in Program 12–4.

12–6. The number of clients that can support is bounded by the array
of server thread arguments. Modify the program so that there is no such
bound. You will need to create a data structure that allows you to add and
delete thread arguments, and you also need to be able to scan the struc-
ture for terminated server threads. An alternative, and arguably simpler,
approach would be to have each server thread manage its own state with-
out the boss thread being involved other than to ask the server threads to
shut down and wait for them to complete.

12–7. Develop additional in-process servers. For example, convert the pro-
gram (see Chapter 6).

12–8. Enhance the server (Program 12–2) so that you can specify multiple DLLs
on the command line.

12–9. Investigate the function and the option. Apply
the option to one of the server examples.

12–10. Ensure that is free of resource leaks. Do the same with
, which was modified to use the DLL in Program 12–5.

12–11. Extend the exception handler in Program 12–4 so that it reports the
exception and exception type at the end of the temporary file used for the
server results.

12–12. Extended exercise (requires extra equipment): If you have access to a UNIX
machine that is networked to your Windows machine, port to
the UNIX machine and have it access to run Windows
programs. You will, of course, need to convert data types such as
and to other types (and , respectively, in these
two cases). Also, you will need to ensure that the message length is
transmitted in big-endian format. Use functions such as to convert
the message lengths. Finally, port to UNIX so that Windows
machines can execute UNIX commands on a remote system. Convert the
DLL calls to shared library calls.

12–13. shuts down the accept thread by closing the connection socket
(see Run 12–3). Is there a better way to terminate the accept thread?
Potential approaches to investigate include queuing an APC as in Chapter
10. Or, can you use the Windows extended function, (Chapter
14 may help)?

ptg

E X E R C I S E S 451

12–14. A comment after Program 12–5 () mentions that you
cannot assure that will be invoked for every thread,
and, therefore, there could be resource leaks (memory, temporary files,
open file handles, etc.). Implement a solution in that
uses to free all allocated memory. Because you
cannot find the allocated memory with , maintain a list of
all allocated memory.

12–15. Read about the SSL in MSDN and the Additional Reading references.
Enhance the programs to use SSL for secure client/server communication.

ptg

This page intentionally left blank

ptg

453

C H A P T E R

13 Windows
Services

The server programs in Chapters 11 and 12 are console applications. In principle,
the servers could run indefinitely, serving numerous clients as they connect, send
requests, receive responses, and disconnect. That is, these servers could provide
continuous services, but to be fully effective, the services should be manageable.

Windows Services,1 previously known as NT Services, provide the management
capabilities required to convert the servers into services that can be initiated on
command or at boot time, before any user logs in, and can also be paused, resumed,
terminated, and monitored. The registry maintains information about services.

Ultimately, any server, such as those developed in Chapters 11 and 12, should
be converted to a service, especially if it is to be widely used by customers or
within an organization.

Windows provides a number of services; examples include the DNS Client,
several SQL Server services, and Terminal Services. The computer management
snap-in, accessible from the Control Panel, displays the full set of services.

Chapter 6’s (Program 6–3) provides rudimentary server manage-
ment by allowing you to bring up a server under job control and send a termina-
tion signal. Windows Services, however, are much more comprehensive and
robust, and the main example is a conversion of so that it can control
Windows Services.

This chapter also shows how to convert an existing console application into a
Windows service and how to install, monitor, and control the service. Logging,
which allows a service to log its actions to a file, is also described.

1 This terminology can be confusing because Windows provides numerous services that are not the Win-
dows Services described here. However, the context should make the meaning clear, just as using the
term “Windows” throughout the book when talking specifically about the API has not been a problem.

ptg

454 C H A P T E R 1 3 W I N D O W S S E R V I C E S

Writing Windows Services—Overview

Windows Services run under the control of a Service Control Manager (SCM). You
can interact with the SCM to control services in three ways:

1. Use the management snap-in labeled Services under Systems and Mainte-
nance, Administrative Tools in the Control Panel.

2. Control services with the command line tool.

3. Control the SCM programmatically, as Program 13-3 demonstrates.

Converting a console application, such as or , to a Win-
dows Service requires three major steps to place the program under the SCM.

1. Create a new entry point that registers the service with the SCM, sup-
plying the logical service entry points and names.

2. Convert the old entry point function to , which regis-
ters a service control handler and informs the SCM of its status. The remain-
ing code is essentially that of the existing program, although you can add
event logging commands. The name is a placeholder for the
name of a logical service, and there can be one or more logical services in a sin-
gle process.

3. Write the service control handler function to respond to commands from the SCM.

As we describe these three steps, there are several references to creating,
starting, and controlling services. Later sections describe the specifics, and
Figure 13–1, later in the chapter, illustrates the component interactions.

The Function

The new function, which the SCM calls, has the task of registering the
service with the SCM and starting the service control dispatcher. This requires a
call to the function with the name(s) and entry
point(s) of one or more logical services.

ptg

 F U N C T I O N S 455

The single parameter, , is the address of an array of
 items, where each item is a logical service name and

entry point. The end of the array is indicated by a pair of entries.
The return is if the registration was successful.
The main thread of the service process that calls

 connects the thread to the SCM. The SCM registers the service(s)
with the calling thread as the service control dispatcher thread. The SCM does not
return to the calling thread until all services have terminated. Notice, however,
that the logical services do not actually start at this time; starting the service re-
quires the function, which we describe later.

Program 13–1 shows a typical service main program with a single logical service.

Program 13–1 The Main Service Entry Point

 Functions

The dispatch table specifies the functions, as shown in Program 13–1, and each func-
tion represents a logical service. The functions are enhanced versions of the base pro-
gram that is being converted to a service, and the SCM invokes each logical service on
its own thread. A logical service may, in turn, start up additional threads, such as the
server worker threads that and create. Frequently, there is just
one logical service within a Windows Service. In Program 13–2, the logical service is

ptg

456 C H A P T E R 1 3 W I N D O W S S E R V I C E S

adapted from the main server (Program 12–2). It would be possible, however, to run
both socket and named pipe logical services under the same Windows service, in
which case you would supply two service main functions.

While the function is an adaptation of a function
with argument count and argument string parameters, there is one small change.
The function should be declared rather than having an return
of a normal function.

Registering the Service Control Handler

A service control handler, called by the SCM, must be able to control the
associated logical service. The console control handler in , which sets a
global shutdown flag, illustrates, in limited form, what is expected of a handler.
First, however, each logical service must immediately register a handler using

. The function call should be at the beginning
of and not called again. The SCM, after receiving a control
request for the service, calls the handler.

Parameters

 is the user-supplied service name provided in the service table
entry for this logical service; it should match a function name regis-
tered with .

 is the address of the extended handler function, described in a
later section.

 is user-defined data passed to the control handler. This allows a sin-
gle control handler to distinguish between multiple services using the same handler.

The return value, which is a object, is if there is
an error, and the usual methods can be used to analyze errors.

Setting the Service Status

Now that the handler is registered, the next immediate task is to set the service
status to using

ptg

 F U N C T I O N S 457

 will also be used in several other places to set different values, informing
the SCM of the service’s current status. A later section and Table 13–3 describe
the valid status values in addition to .

The service control handler must set the status every time it is called, even if
there is no status change.

Furthermore, any of the service’s threads can call at any
time to report progress, errors, or other information, and services frequently have
a thread dedicated to periodic status updates. The time period between status up-
date calls is specified in a member field in a data structure parameter. The SCM
can assume an error has occurred if a status update does not occur within this
time period.

Parameters

 is the returned by
. The call must

therefore precede the call.
, pointing to a structure, describes

service properties, status, and capabilities.

The Structure

The structure definition is:

ptg

458 C H A P T E R 1 3 W I N D O W S S E R V I C E S

Parameters

 is the normal thread exit code for the logical service. The
service must set this to while running and on normal termination.
Despite the name, you can use this field on 64-bit applications; there will be “32”
references in other nSames.

 can be used to indicate an error while the ser-
vice is starting or stopping, but this value will be ignored unless
is set to .

 should be incremented periodically by the service to report its
progress during all steps, including initialization and shutdown. This value is
invalid and should be if the service does not have a start, stop, pause, or
continue operation pending.

, in milliseconds, is the elapsed time between calls to
 with either an incremented value of value or a change in

. As mentioned previously, the SCM can assume that an error has
occurred if this time period passes without such a call.

The remaining members are now described in individual
sections.

Service Type

 must be one of the values described in Table 13–1.

Table 13–1 Service Types

Value Meaning

Indicates that the Windows service runs in its
own process with its own resources. Program 13–
2 uses this value.

Indicates a Windows service that shares a
process with other services, consolidating several
services into a single process, which can reduce
overall resource requirements.

Indicates a Windows device driver and is
reserved for system use.

Specifies a Windows file system driver and is
also reserved for system use.

This flag can be combined with only the two
 values. However, interactive

services pose a security risk and should not be
used.

ptg

 F U N C T I O N S 459

For our purposes, the type is almost always ,
and is the only other value suitable for user-
mode services. Showing the different values, however, does indicate that services
play many different roles.

Service State

 indicates the current service state. Table 13–2 shows the differ-
ent possible values.

Table 13–2 Service State Values
Value Meaning

The service is not running.

The service is in the process of starting but is not
yet ready to respond to requests. For example,
the worker threads have not yet been started.

The service is stopping but has not yet completed
shutdown. For example, a global shutdown flag
may have been set, but the worker threads have
not yet responded.

The service is running.

The service is in the process of resuming from the
pause state, but it is not yet running.

The service pause is in process, but the service is
not yet safely in the pause state.

The service is paused.

Table 13–3 Controls That a Service Accepts (Partial List)
Value Meaning

Enables .

Enables and
.

(The function cannot
send this control code.)

Notifies the service when system shutdown
occurs. This enables the system to send a

 value to the
service. For Windows system use only.

The startup parameters can change without
restarting. The notification is

.

ptg

460 C H A P T E R 1 3 W I N D O W S S E R V I C E S

Controls Accepted

 specifies the control codes that the service will accept and
process through its service control handler (see the next section). Table 13–3 enu-
merates three values used in a later example, and the appropriate values should
be combined by bit-wise “or” (). See the MSDN entry for for
the three additional values.

Service-Specific Code

Once the handler has been registered and the service status has been set to
, the service can initialize itself and set its status

again. In the case of converting , once the sockets are initialized and the
server is ready to accept clients, the status should be set to .

The Service Control Handler

The service control handler, the callback function specified in
, has the following form:

The parameter indicates the actual control signal sent by the
SCM that should be processed.

There are 14 possible values for , including the controls mentioned
in Table 13–3. Five control values of interest in the example are listed here:

ptg

E X A M P L E : A S E R V I C E “ W R A P P E R ” 461

User-defined values in the range are also permitted but will not be
used here.

 is usually , but nonzero values are used for device manage-
ment, which is out of scope for this book. provides additional data
required by some of these events.

Finally, is user-defined data passed to
 when the handler was registered.

The handler is invoked by the SCM in the same thread as the main program,
and the function is usually written as a statement. This is shown in the
examples.

Event Logging

Services run “headless” without user interaction, so it is not generally appropriate
for a service to display status messages directly. Prior to Vista and NT6, some ser-
vices would create a console, message box, or window for user interaction; those
techniques are no longer available.

The solution is to log events to a log file or use Windows event logging func-
tionality. Such events are maintained within Windows and can be viewed from
the event viewer provided in the control panel’s Administrative Tools.

The upcoming example (Program 13–2) logs significant ser-
vice events and errors to a log file; an exercise asks you to modify the program to
use Windows events.

Example: A Service “Wrapper”

Program 13–2 performs the conversion of an arbitrary to a service. The
conversion to a service depends on carrying out the tasks we’ve described. The ex-
isting server code (that is, the old function) is invoked as a thread or pro-
cess from the function . Therefore, the code here is essentially
a wrapper around an existing server program.

The command line option specifies that the program is to run as a stand-
alone program, perhaps for debugging. Without the option, there is a call to

.
Another addition is a log file; the name is hard-coded for simplicity. The ser-

vice logs significant events to that file. Simple functions to initialize and close the
log and to log messages are at the end.

Several other simplifications and limitations are noted in the comments.

ptg

462 C H A P T E R 1 3 W I N D O W S S E R V I C E S

Program 13–2 A Service Wrapper

ptg

E X A M P L E : A S E R V I C E “ W R A P P E R ” 463

ptg

464 C H A P T E R 1 3 W I N D O W S S E R V I C E S

ptg

E X A M P L E : A S E R V I C E “ W R A P P E R ” 465

ptg

466 C H A P T E R 1 3 W I N D O W S S E R V I C E S

Run 13–2a Controlled by

ptg

M A N A G I N G W I N D O W S S E R V I C E S 467

Running the Simple Service

Run 13–2a shows the command tool creating, starting, querying, stopping, and
deleting . Only an administrator can perform these steps.

Run 13–2b shows the log file.

Managing Windows Services

Once a service has been written, the next task is to put the service under the
control of the SCM so that the SCM can start, stop, and otherwise control the
service. While and the Services administrative tool can do this, you can
also manage services programmatically, as we’ll do next.

There are several steps to open the SCM, create a service under SCM control,
and then start the service. These steps do not directly control the service; they are
directives to the SCM, which in turn controls the specified service.

Opening the SCM

A separate process, running as “Administrator,” is necessary to create the service,
much as (Chapter 6) starts jobs. The first step is to open the SCM, ob-
taining a handle that then allows the service creation.

Run 13–2b The Log File

ptg

468 C H A P T E R 1 3 W I N D O W S S E R V I C E S

Parameters

 is if the SCM is on the local computer, but you can also ac-
cess the SCM on networked machines.

 is also normally .
 is normally , but you can

specify more limited access rights, as described in the on-line documentation.

Creating and Deleting a Service

Call to register a service.

As part of operation, new services are entered into the regis-
try under:

Do not, however, attempt to bypass by manipulating the reg-
istry directly; we just point this out to indicate how Windows keeps service infor-
mation.

Parameters

 is the obtained from .

ptg

M A N A G I N G W I N D O W S S E R V I C E S 469

 is the name used for future references to the service and is
one of the logical service names specified in the dispatch table in the

 call. Notice that there is a separate call
for each logical service.

 is the name displayed to the user to represent the service in
the Services administrative tool (accessed from the Control Panel under Adminis-
trative Tools) and elsewhere. You will see this name entered immediately after a
successful call.

 can be or combinations of
, , and . See the MSDN

documentation for additional details.
 has values as in Table 13–1.

 specifies how the service is started.
is used in our examples, but other values (and

) allow device driver services to be started at boot time or at
system start time, and specifies that a service is to be
started at machine start-up.

 gives the service’s executable as a full path; the ex-
tension is necessary. Use quotes if the path contains spaces.

Other parameters specify account name and password, groups for combining
services, and dependencies when there are several interdependent services.

Service configuration parameters of an existing service can be changed with
 and , which is simpler and is

not, perhaps for that reason, called . Identify the service
by its handle, and you can specify new values for most of the parameters. For exam-
ple, you can provide a new or value but not a new
value for .

There is also an function to obtain a handle to a named service.
Use to unregister a service from the SCM and

 to close s.

Starting a Service

A service, once created, is not running. Start the function by
specifying the handle obtained from along with the ,
command line parameters expected by the service’s main function (that is, the
function specified in the dispatch table).

ptg

470 C H A P T E R 1 3 W I N D O W S S E R V I C E S

Controlling a Service

Control a service by telling the SCM to invoke the service’s control handler with
the specified control.

The interesting values for our examples are:

or a user-specified value in the range . Additional named values notify a
service that start-up values have changed or there are changes related to binding.

 tells the service to report its status with
, but it’s of limited use, as the SCM receives periodic updates.

 points to a structure that receives the current
status. This is the same structure as that used by the function.

ptg

S U M M A R Y : S E R V I C E O P E R A T I O N A N D M A N A G E M E N T 471

Querying Service Status

Obtain a service’s current status in a structure with the following:

There’s a distinction between calling , which gets the cur-
rent status information from the SCM, and with a

 control code. The former tells the service to
update the SCM rather than the application program.

Summary: Service Operation and Management

Figure 13–1 shows the SCM and its relation to the services and to a service
control program, such as the one in Program 13–3 in the next section. In
particular, a service must register with the SCM, and all commands to the service
pass through the SCM.

Service Control Manager

(SCM)

YourService.exe

DispTable [] = {
"SockSrv", serverSK,
"NPSrv", serverNP,
NULL, NULL };

main ()
{

StartServiceCtrlDispatcher
(DispTable);

}
serverSK (argc, argv [])
{

RegisterServiceCtrlHandler
(HandlerSK);

SetServiceStatus ();
...
Service-Specific code
...

}
HandlerSK (control)
{

switch (control) ...
}
...

OpenSCManager ();
CreateService

(YourService.exe);

StartService (argc, argv[]);

ControlService ();

...

ServiceShell

Figure 13–1 Controlling Windows Services through the SCM

ptg

472 C H A P T E R 1 3 W I N D O W S S E R V I C E S

Example: A Service Control Shell

You can control Windows Services from the Administrative Tools, where there is a
Services icon. Alternatively, you can control services from the Windows command

. Finally, you can control a service from within an application, as
illustrated in the next example, (Program 13–3), which is a
modification of Chapter 6’s (Program 6–3).

This example is intended to show how to control services from a program; it
does not supplant or the Services Administrative tool.

Program 13–3 A Service Control Program

ptg

E X A M P L E : A S E R V I C E C O N T R O L S H E L L 473

ptg

474 C H A P T E R 1 3 W I N D O W S S E R V I C E S

ptg

E X A M P L E : A S E R V I C E C O N T R O L S H E L L 475

ptg

476 C H A P T E R 1 3 W I N D O W S S E R V I C E S

Run 13–3 shows operation.

Sharing Kernel Objects with a Service

There can be situations in which a service and applications share a kernel object.
For example, the service might use a named mutex to protect a shared memory

Run 13–3 Managing Services

ptg

N O T E S O N D E B U G G I N G A S E R V I C E 477

region used to communicate with applications. Furthermore, in this example, the
file mapping would also be a shared kernel object.

There is a difficulty caused by the fact that applications run in a security con-
text separate from that of services, which can run under the system account. Even
if no protection is required, it is not adequate to create and/or open the shared ker-
nel objects with a security attribute pointer (see Chapter 15). Instead, a non-

 discretionary access control list is required at the very least—that is, the ap-
plications and the service need to use a non- security attribute structure. In
general, you may want to secure the objects, and, again, this is the subject of
Chapter 15.

Also notice that if a service runs under the system account, there can be
difficulties in accessing resources on other machines, such as shared files, from
within a service.

Notes on Debugging a Service

A service is expected to run continuously, so it must be reliable and as defect-free
as possible. While a service can be attached to the debugger and event logs can be
used to trace service operation, these techniques are most appropriate after a
service has been deployed.

During initial development and debugging, however, it is often easier to take
advantage of the service wrapper presented in Program 13–2, which allows opera-
tion as either a service or a stand-alone application based on the command line
option.

• Develop the “preservice” version as a stand-alone program. , for
example, was developed in this way.

• Instrument the program with event logging or a log file.

• Once the program is judged to be ready for deployment as a service, run it
without the command line option so that it runs as a service.

• Additional testing on a service is essential to detect both additional logic
errors and security issues. Services can run under the system account and do
not, for instance, necessarily have access to user objects, and the stand-alone
version may not detect such problems.

• Normal events and minor maintenance debugging can be performed using
information in the log file or event log. Even the status information can help
determine server health and defect symptoms.

• If extensive maintenance is necessary, you can debug as a normal application
using the option.

ptg

478 C H A P T E R 1 3 W I N D O W S S E R V I C E S

Summary

Windows services provide standardized capabilities to add user-developed
services to Windows computers. An existing stand-alone program can be
converted to a service using the methods in this chapter.

A service can be created, controlled, and monitored using the Administrative
Tools or the program presented in this chapter. The SCM controls
and monitors deployed services, and there are registry entries for all services.

Looking Ahead

Chapter 14 describes asynchronous I/O, which provides two techniques that allow
multiple read and write operations to take place concurrently with other process-
ing. It is not necessary to use threads; only one user thread is required.

In most cases, multiple threads are easier to program than asynchronous I/O,
and thread performance is generally superior. However, asynchronous I/O is
essential to the use of I/O completion ports, which are extremely useful when
building scalable servers that can handle large numbers of clients.

Chapter 14 also describes waitable timers.

Additional Reading

Kevin Miller’s Professional NT Services thoroughly covers the subject. Device
drivers and their interaction with services were not covered in this chapter; a book
such as Walter Oney’s Programming the Microsoft Windows Driver Model, Second
Edition, can provide that information.

Exercises

13–1. Modify Program 13–2 () to use Windows events instead of
a log file. The principal functions to use are ,

, and , all described in MSDN. Also
consider using Vista event logging. Alternatively, use an open source log-
ging system such as NLog (http://nlog-project.org/home).

13–2. Extend to accept pause controls in a meaningful way. As sug-
gested behavior for a paused service, it should maintain existing connec-
tions but not accept new connections. Furthermore, it should complete and
respond to requests that are currently being processed, but it should not
accept any more client requests.

http://nlog-project.org/home

ptg

E X E R C I S E S 479

13–3. , when interrogating service status, simply prints out the
numbers. Extend it so that status is presented in a more readable form.

13–4. Convert (Program 12–3) into a service.

13–5. Test in the Exercises file. Modify so that it uses
event logging.

ptg

This page intentionally left blank

ptg

481

C H A P T E R

14 Asynchronous
Input/Output
and
Completion
Ports

Input and output are inherently slow compared with other processing due to fac-
tors such as the following:

• Delays caused by track and sector seek time on random access devices, such as
disks

• Delays caused by the relatively slow data transfer rate between a physical
device and system memory

• Delays in network data transfer using file servers, storage area networks, and so on

All I/O in previous examples has been thread-synchronous, so that the entire
thread waits until the I/O operation completes.

This chapter shows how a thread can continue without waiting for an
operation to complete—that is, threads can perform asynchronous I/O. Examples
illustrate the different techniques available in Windows.

Waitable timers, which require some of the same techniques, are also described here.
Finally, and more important, once standard asynchronous I/O is understood,

we are in a position to use I/O completion ports, which are extremely useful when
building scalable servers that must be able to support large numbers of clients
without creating a thread for each client. Program 14–4 modifies an earlier server
to exploit I/O completion ports.

ptg

482 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

Overview of Windows Asynchronous I/O

There are three techniques for achieving asynchronous I/O in Windows; they dif-
fer in both the methods used to start I/O operations and those used to determine
when operations are complete.

• Multithreaded I/O. Each thread within a process or set of processes performs
normal synchronous I/O, but other threads can continue execution.

• Overlapped I/O (with waiting). A thread continues execution after issuing a
read, write, or other I/O operation. When the thread requires the I/O results
before continuing, it waits on either the file handle or an event specified in the

 or overlapped structure.

• Overlapped I/O with completion routines (or “extended I/O” or
“alertable I/O”). The system invokes a specified completion routine callback
function within the thread when the I/O operation completes. The term
“extended I/O” is easy to remember because it requires extended functions
such as and .

The terms “overlapped I/O” and “extended I/O” are used for the last two
techniques; they are, however, two forms of overlapped I/O that differ in the way
Windows indicates completed operations.

The threaded server in Chapter 11 uses multithreaded I/O on named pipes.
 (Program 7–1) manages concurrent I/O to several files. Thus, we have exist-

ing programs that perform multithreaded I/O to achieve a form of asynchronous I/O.
Overlapped I/O is the subject of the next section, and the examples implement

file conversion (simplified Caesar cipher, first used in Chapter 2) with this tech-
nique in order to illustrate sequential file processing. The example is a modifica-
tion of Program 2–3. Following overlapped I/O, we explain extended I/O with
completion routines.

Note: Overlapped and extended I/O can be complex and seldom yield large per-
formance benefits on Windows XP. Threads frequently overcome these problems, so
some readers might wish to skip ahead to the sections on waitable timers and I/O
completion ports (but see the next note), referring back as necessary. Before doing so,
however, you will find asynchronous I/O concepts in both old and very new technol-
ogy, so it can be worthwhile to learn the techniques. Also, the asynchronous proce-
dure call (APC) operation (Chapter 10) is very similar to extended I/O. There’s a
final significant advantage to the two overlapped I/O techniques: you can cancel
outstanding I/O operations, allowing cleanup.

NT6 Note: NT6 (including Windows 7) provides an exception to the comment
about performance. NT6 extended and overlapped I/O provide good performance
compared to simple sequential I/O; we’ll show the results here.

ptg

O V E R L A P P E D I / O 483

Finally, since I/O performance and scalability are almost always the principal
objectives (in addition to correctness), remember that memory-mapped I/O can be
very effective when processing files (Chapter 5), although it is not trivial to re-
cover from memory-mapped I/O errors.

Overlapped I/O

The first requirement for asynchronous I/O, whether overlapped or extended, is to
set the overlapped attribute of the file or other handle. Do this by specifying the

 flag on the or other call that creates the
file, named pipe, or other handle. Sockets (Chapter 13), whether created by

 or , have the attribute set by default. An overlapped socket can be
used asynchronously in all Windows versions.

Until now, overlapped structures have only been used with and
as an alternative to (Chapter 3), but they are essential for
overlapped I/O. These structures are optional parameters on four I/O functions
that can potentially block while the operation completes:

Recall that when you’re specifying as part of
 (for) or as part of (for

), the pipe or file is to be used only in overlapped mode. Overlapped I/O does
not work with anonymous pipes.

Consequences of Overlapped I/O

Overlapped I/O is asynchronous. There are several consequences when starting
an overlapped I/O operation.

• I/O operations do not block. The system returns immediately from a call to
, , , or .

• A returned value does not necessarily indicate failure because the I/O
operation is most likely not yet complete. In this normal case,

 will return , indicating no error. Windows pro-
vides a different mechanism to indicate status.

ptg

484 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

• The returned number of bytes transferred is also not useful if the transfer is
not complete. Windows must provide another means of obtaining this
information.

• The program may issue multiple reads or writes on a single overlapped file
handle. Therefore, the handle’s file pointer is meaningless. There must be
another method to specify file position with each read or write. This is not a
problem with named pipes, which are inherently sequential.

• The program must be able to wait (synchronize) on I/O completion. In case of
multiple outstanding operations on a single handle, it must be able to
determine which operation has completed. I/O operations do not necessarily
complete in the same order in which they were issued.

The last two issues—file position and synchronization—are addressed by the
overlapped structures.

Overlapped Structures

The structure (specified, for example, by the
parameter of) indicates the following:

• The file position (64 bits) where the read or write is to start, as discussed in
Chapter 3

• The event (manual-reset) that will be signaled when the operation completes

Here is the structure.

The file position (pointer) must be set in both and . Do
not set and , which are reserved for the system.
Currently, Windows sets to the I/O request error code and

 to the number of bytes transferred. However, MSDN warns that

ptg

O V E R L A P P E D I / O 485

this behavior may change in the future, and there are other ways to get the
information.

 is an event handle (created with). The event can be
named or unnamed, but it must be a manual-reset event (see Chapter 8) when
used for overlapped I/O; the reasons are explained soon. The event is signaled
when the I/O operation completes.

Alternatively, can be ; in this case, the program can wait on the
file handle, which is also a synchronization object (see the upcoming list of cau-
tions). Note: For convenience, the term “file handle” is used to describe the handle
with , , and so on, even though this handle could refer to a
pipe or device rather than to a file.

This event is immediately reset (set to the nonsignaled state) by the system
when the program makes an I/O call. When the I/O operation completes, the event
is signaled and remains signaled until it is used with another I/O operation. The
event needs to be manual-reset because multiple threads might wait on it (although
our example uses only one thread).

Even i f the f i le h an dle i s s ynchronous (i t was cr eated without
), the overlapped structure is an alternative to

 and for specifying file position. In this case, the
 or other call does not return until the operation is complete. This feature

was useful in Chapter 3.
Notice also that an outstanding I/O operation is uniquely identified by the

combination of file handle and overlapped structure.
Here are a few cautions to keep in mind.

• Do not reuse an structure while its associated I/O operation, if
any, is outstanding.

• Similarly, do not reuse an event while it is part of an structure.

• If there is more than one outstanding request on an overlapped handle, use
events, rather than the file handle, for synchronization. We provide examples
of both forms.

• As with any automatic variable, if the structure or event is an
automatic variable in a block, be certain not to exit the block before synchro-
nizing with the I/O operation. Also, close the event handle before leaving the
block to avoid a resource leak.

Overlapped I/O States

An overlapped or operation—or, for that matter, one of the
two named pipe operations—returns immediately. In most cases, the I/O will not

ptg

486 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

be complete, and the read or write returns . returns
. However, test the read or write return; if it’s , you can

get the transfer count immediately and proceed without waiting.
After waiting on a synchronization object (an event or, perhaps, the file han-

dle) for the operation to complete, you need to determine how many bytes were
transferred. This is the primary purpose of .

The handle and overlapped structure combine to indicate the specific I/O opera-
tion. , if , specifies that will wait until the speci-
fied operation is complete; otherwise, it returns immediately. In either case, the
function returns only if the operation has completed successfully.

 returns in case of a return from
, so it is possible to poll for I/O completion with this function.

The number of bytes transferred is in . Be certain that the over-
lapped structure is unchanged from when it was used with the overlapped I/O operation.

Canceling Overlapped I/O Operations

The Boolean NT6 function cancels outstanding overlapped I/O oper-
ations on the specified handle in the current process. The arguments are the han-
dle and the overlapped structure. All pending operations issued by the calling
thread using the handle and overlapped structure are canceled. Use for the
overlapped structure to cancel all operations using the handle.

 cancels I/O requests in the calling thread only.
The canceled operations will usually complete with error code

 and status , although the status
would be if the operation completed before the cancellation call.

 does not, however, wait for the cancellation to complete, so it’s
still essential to wait in the normal way before reusing the structure
for another I/O operation.

Program 14-4 () exploits .

ptg

E X A M P L E : F I L E C O N V E R S I O N W I T H O V E R L A P P E D I / O A N D M U L T I P L E B U F F E R S 487

Example: Synchronizing on a File Handle

Overlapped I/O can be useful and relatively simple when there is only one out-
standing operation. The program can synchronize on the file handle rather than
on an event.

The following code fragment shows how a program can initiate a read opera-
tion to read a portion of a file, continue to perform other processing, and then wait
on the handle.

Example: File Conversion with
Overlapped I/O and Multiple Buffers

Program 2–3 () encrypted a file to illustrate sequential file conversion, and
Program 5-3 () showed how to perform the same sequential file processing
with memory-mapped files. Program 14–1 () performs the same task using
overlapped I/O and multiple buffers holding fixed-size records.

Figure 14–1 shows the program organization and an operational scenario with
four fixed-size buffers. The program is implemented so that the number of buffers is
defined in a preprocessor variable, but the following discussion assumes four buffers.

First, the program initializes all the overlapped structures with events and
file positions. There is a separate overlapped structure for each input and each
output buffer. Next, an overlapped read is issued for each of the four input buffers.
The program then uses to wait for a single event,
indicating either a read or a write completed. When a read completes, the buffer is
copied and converted into the corresponding output buffer and the write is
initiated. When a write completes, the next read is initiated. Notice that the
events associated with the input and output buffers are arranged in a single array
to be used as an argument to .

ptg

488 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

Program 14–1 File Conversion with Overlapped I/O

Figure 14–1 An Asynchronous File Update Model

Record 2

Original Records

Record 0

Record 4

Record 8 Record 11Record 10Record 9

Record 0 Record 3 Record 6 Record 1 Record 9Record 4Record 2

Record 0 Record 3 Record 4 Record 6 Record 9

Converted Records

a
Record 1

Initiate 4 reads
while (iWait < 2 * NumRcds) {
WaitForMultipleObjects (8, ...);
if (ReadCompleted)
UpdateRecord (i);
Initiate Write (Record [i]);

else
Initiate Read (Record [i + 4]);

iWait++;
}

Record 5

Record 1 Record 2 Record 3

Record 7Record 6

ptg

E X A M P L E : F I L E C O N V E R S I O N W I T H O V E R L A P P E D I / O A N D M U L T I P L E B U F F E R S 489

ptg

490 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

ptg

E X A M P L E : F I L E C O N V E R S I O N W I T H O V E R L A P P E D I / O A N D M U L T I P L E B U F F E R S 491

Run 14–1 shows timings converting the same 640MB file with ,
, and on a four-processor Windows Vista machine.

Memory mapping and overlapped I/O provide the best performance, with
memory-mapped I/O showing a consistent advantage (12.7 seconds compared to
about 16 seconds in this test). Run 14–1 also compares the converted files and the
decrypted file as an initial correctness test.

The timing results in Run 14–1 depend on the record size (the
 macro in the listing). The (16K) value worked well, as did 8K.

However, 32K required twice the time. An exercise suggests experimenting with
the record size on different systems and file sizes. Appendix C shows additional
timing results on several systems for the different implementations.

Caution: The elapsed time in these tests can occasionally increase signifi-
cantly, sometimes by factors of 2 or more. However, Run 14–1 contains typical re-
sults that I’ve been able to reproduce consistently. Nonetheless, be aware that you
might see much longer times, depending on numerous factors such as other ma-
chine activity.

Run 14–1 Comparing Performance and Testing Results

ptg

492 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

Extended I/O with Completion Routines

There is an alternative to using synchronization objects. Rather than requiring a
thread to wait for a completion signal on an event or handle, the system can invoke
a user-specified completion, or callback, routine when an I/O operation completes.
The completion routine can then start the next I/O operation and perform any other
bookkeeping. The completion or callback routine is similar to Chapter 10’s asyn-
chronous procedure call and requires alertable wait states.

How can the program specify the completion routine? There are no remaining
 or parameters or data structures to hold the routine’s

address. There is, however, a family of extended I/O functions, identified by the
suffix and containing an extra parameter for the completion routine address. The
read and write functions are and , respectively. It is
also necessary to use one of five alertable wait functions:

•

•

•

•

•

Extended I/O is sometimes called alertable I/O, and Chapter 10 used alert-
able wait states for thread cancellation. The following sections show how to use
the extended functions.

 and Completion Routines

The extended read and write functions work with open file, named pipe, and
mailslot handles if was used at open (create) time.
Notice that the flag sets a handle attribute, and while overlapped I/O and
extended I/O are distinguished, a single overlapped flag enables both types of
asynchronous I/O on a handle.

Overlapped sockets (Chapter 12) operate with and
.

ptg

E X T E N D E D I / O W I T H C O M P L E T I O N R O U T I N E S 493

The two functions are familiar but have an extra parameter to specify the
completion routine. The completion routine could be ; there’s no easy way to
get the results.

The overlapped structures must be supplied, but there is no need to specify
the member; the system ignores it. It turns out, however, that this mem-
ber is useful for carrying information, such as a sequence number, to identify the
I/O operation, as shown in Program 14–2.

In comparison to and , notice that the extended func-
tions do not require the parameters for the number of bytes transferred. That in-
formation is conveyed as an argument to the completion routine.

The completion routine has parameters for the byte count, an error code, and
the overlapped structure. The last parameter is necessary so that the completion
routine can determine which of several outstanding operations has completed. No-
tice that the same cautions regarding reuse or destruction of overlapped struc-
tures apply here as they did for overlapped I/O.

As was the case with , which also specified a function name,
 is a placeholder and not an actual function name.

Common values are (success) and (when a
read tries to go past the end of the file). The overlapped structure is the one used
by the completed or call.

ptg

494 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

Two things must happen before the completion routine is invoked by the system.

1. The I/O operation must complete.

2. The calling thread must be in an alertable wait state, notifying the system
that it should execute any queued completion routines.

How does a thread get into an alertable wait state? It must make an explicit
call to one of the alertable wait functions described in the next section. In this
way, the thread can ensure that the completion routine does not execute prema-
turely. A thread can be in an alertable wait state only while it is calling an alert-
able wait function; on return, the thread is no longer in this state.

Once these two conditions have been met, completion routines that have been
queued as the result of I/O completion are executed. Completion routines are exe-
cuted in the same thread that made the original I/O call and is in the alertable
wait state. Therefore, the thread should enter an alertable wait state only when it
is safe for completion routines to execute.

Alertable Wait Functions

There are five alertable wait functions, and the three that relate directly to our
current needs are described here.

Each alertable wait function has a flag that must be set to
when used for asynchronous I/O. The functions are extensions of the familiar

 and functions.

ptg

E X T E N D E D I / O W I T H C O M P L E T I O N R O U T I N E S 495

Time-outs, as always, are in milliseconds. These three functions will return as
soon as any one of the following situations occurs.

• Handle(s) are signaled so as to satisfy one of the two wait functions in the nor-
mal way.

• The time-out period expires.

• At least one completion routine or user APC (see Chapter 10) is queued to the
thread and is set. Completion routines are queued when their
associated I/O operation is complete (see Figure 14–2) or
queues a user APC. Windows executes all queued user APCs and completion
routines before returning from an alertable wait function. Note how this al-
lows I/O operation cancellation with a user APC, as was done in Chapter 10.

Also notice that no events are associated with the and
 overlapped structures, so any handles in the wait call will have no direct

relation to the I/O operations. , on the other hand, is not associated with
a synchronization object and is the easiest of the three functions to use.
is usually used with an time-out so that the function will return only
after one or more of the currently queued completion routines have finished.

Execution of Completion Routines and the Alertable Wait Return

As soon as an extended I/O operation is complete, its associated completion rou-
tine, with the overlapped structure, byte count, and error status arguments, is
queued for execution.

All of a thread’s queued completion routines are executed when the thread
enters an alertable wait state. They are executed sequentially but not necessarily
in the same order as I/O completion. The alertable wait function returns only after
the completion routines return. This property is essential to the proper operation
of most programs because it assumes that the completion routines can prepare for
the next use of the overlapped structure and perform related operations to get the
program to a known state before the alertable wait returns.

 and the wait functions will return if one or
more queued completion routines were executed.

Here are two final points.

1. Use an time-out value with any alertable wait function. Without
the possibility of a time-out, the wait function will return only after all queued
completion routines have been executed or the handles have been signaled.

ptg

496 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

2. It is common practice to use the data member of the overlapped
structure to convey information to the completion routine because Windows
ignores this field.

Figure 14–2 illustrates the interaction among the main thread, the completion
routines, and the alertable waits. In this example, three concurrent read operations
are started, and two are completed by the time the alertable wait is performed.

Example: File Conversion with Extended I/O

Program 14–2, , reimplements Program 14–1, . These programs show
the programming differences between the two asynchronous I/O techniques.

 is similar to Program 14–1 but moves most of the bookkeeping code to the
completion routines, and many variables are global so as to be accessible from the
completion routines.

hIn = CreateFile (... FILE_FLAG_OVERLAPPED ...);

for (i = 0; i < 3; i++) {

ov [i].hEvent = i + 1;

ov [i].Offset = i * LSIZE;

ReadFileEx (hIn, &ov [i], RDone);
}

/* More thread code */
[Third read completes]

/* More thread code */

[First read completes]

/* More thread code */

SleepEx (INFINITE, TRUE);

[Completion Routine (RDone) executes twice]

[Return from SleepEx]

/* More thread code */

[Second read completes]

/* More thread code */

SleepEx (INFINITE, TRUE);

[Completion Routine (RDONE) executes once]

/* More thread code */

ExitProcess (0);

RDone (... lpov ...)

{ /* Indicate I/O complete */

CompleteFlag [lpov -> hEvent] = TRUE;

}

Queue

hEvent = 2

hEvent = 3

hEvent = 1

Figure 14–2 Asynchronous I/O with Completion Routines

ptg

E X A M P L E : F I L E C O N V E R S I O N W I T H E X T E N D E D I / O 497

Program 14–2 File Conversion with Extended I/O

ptg

498 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

ptg

E X A M P L E : F I L E C O N V E R S I O N W I T H E X T E N D E D I / O 499

Run 14–2 Overlapped I/O with Completion Routines

ptg

500 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

Run 14–2 and Appendix C show that performs competitively with
, which was slower than the memory-mapped version on the tested four-

processor Windows Vista computer. Based on these results, asynchronous over-
lapped I/O is a good choice for sequential and possibly other file I/O but does not
compete with memory-mapped I/O. The choice between the overlapped and ex-
tended overlapped I/O is somewhat a matter of taste (I found slightly eas-
ier to write and debug).

Asynchronous I/O with Threads

Overlapped and extended I/O achieve asynchronous I/O within a single user thread.
These techniques are common, in one form or another, in many older OSs for sup-
porting limited forms of asynchronous operation in single-threaded systems.

Windows, however, supports threads, so the same functional effect is possible
by performing synchronous I/O operations in multiple, separate threads, at the
possible performance cost due to thread management overhead. Threads also
provide a uniform and, arguably, much simpler way to perform asynchronous I/O.
An alternative to Programs 14–1 and 14–2 is to give each thread its own handle to
the file and each thread could synchronously process every fourth record.

The program, not listed here but included in the Examples file,
illustrates how to use threads in this way. is simpler than the two
asynchronous I/O programs because the bookkeeping is less complex. Each thread
simply maintains its own buffers on its own stack and performs the read, convert,
and write sequence synchronously in a loop. The performance is superior to the
results in Run 14–2, so the possible performance impact is not realized. In
particular, the 640MB file conversions, which require about 16 seconds for
and , require about 10 seconds for , running on the same machine.
This is better than the memory-mapped performance (about 12 seconds).

What would happen if we combined memory mapping and multiple threads?
, also in the Examples file, shows even better results, namely about 4

seconds for this case. Appendix C has results for several different machines.
My personal preference is to use threads rather than asynchronous I/O for file process-

ing, and they provide the best performance in most cases. Memory mapping can improve
things even more, although it’s difficult to recover from I/O errors, as noted in Chapter 5.
The programming logic is simpler, but there are the usual thread risks.

There are some important exceptions to this generalization.

• The situation shown earlier in the chapter in which there is only a single out-
standing operation and the file handle can be used for synchronization.

• Asynchronous I/O can be canceled. However, with small modifications,
can be modified to use overlapped I/O, with the reading or writing thread

ptg

W A I T A B L E T I M E R S 501

waiting on the event immediately after the I/O operation is started. Exercise
14–10 suggests this modification.

• Multithreaded programs have many risks and can be a challenge to get right,
as Chapters 7 through 10 describe. A source file, , that’s in the
unzipped Examples, documents several pitfalls I encountered while develop-
ing ; don’t try to use this program because it is not correct!

• Asynchronous I/O completion ports, described at the end of this chapter, are
useful with servers.

• NT6 executes asynchronous I/O programs very efficiently compared to normal
file I/O (see Run 14–1 and Appendix C).

Waitable Timers

Windows supports waitable timers, a type of waitable kernel object.
You can always create your own timing signal using a timing thread that sets

an event after waking from a call. (Program 11–3) also uses a
timing thread to broadcast its pipe name periodically. Therefore, waitable timers
are a redundant but useful way to perform tasks periodically or at specified abso-
lute or relative times.

As the name suggests, you can wait for a waitable timer to be signaled, but
you can also use a callback routine similar to the extended I/O completion
routines. A waitable timer can be either a synchronization timer or a manual-reset
(or notification) timer. Synchronization and manual-reset timers are comparable
to auto-reset and manual-reset events; a synchronization timer becomes
unsignaled after a wait completes on it, and a manual-reset timer must be reset
explicitly. In summary:

• There are two ways to be notified that a timer is signaled: either wait on the
timer or have a callback routine.

• There are two waitable timer types, which differ in whether or not the timer is
reset automatically after a wait.

The first step is to create a timer handle with .

ptg

502 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

The second parameter, , determines whether the timer is a
synchronization timer or a manual-reset notification timer. Program 14–3 uses a
synchronization timer, but you can change the comment and the parameter
setting to obtain a notification timer. Notice that there is also an

 function that can use the optional name supplied in the third argument.
The timer is initially inactive, but activates it, sets the

timer to unsignaled, and specifies the initial signal time and the time between pe-
riodic signals.

 is a valid timer handle created using .
The second parameter, pointed to by , is either a positive absolute

time or a negative relative time and is actually expressed as a with a
resolution of 100 nanoseconds. variables were introduced in Chapter 3
and were used in Chapter 6’s (Program 6–2).

The third parameter specifies the interval between signals, using millisecond
units. If this value is , the timer is signaled only once. A positive value indicates
that the timer is a periodic timer and continues signaling periodically until you
call . Negative interval values are not allowed.

, the fourth parameter, specifies the time-out call-
back function (completion routine) to be called when the timer is signaled and the
thread enters an alertable wait state. The routine is called with the pointer speci-
fied in the fifth parameter, , as an argument.

Having set a synchronization timer, you can now call or other alert-
able wait function to enter an alertable wait state, allowing the completion rou-
tine to be called. Alternatively, wait on the timer handle. As mentioned
previously, a manual-reset waitable timer handle will remain signaled until the
next call to , whereas Windows resets a synchronization
timer immediately after the first wait after the set.

The complete version of Program 14–3 in the Examples file allows you to ex-
periment with using the four combinations of the two timer types and with choos-
ing between using a completion routine or waiting on the timer handle.

ptg

E X A M P L E : U S I N G A W A I T A B L E T I M E R 503

The final parameter, , is concerned with power conservation. See the
MSDN documentation for more information.

Use to cancel the last effect of a previous
, although it will not change the timer’s signaled state; use an-

other call to do that.

Example: Using a Waitable Timer

Program 14–3 shows how to use a waitable timer to signal the user periodically.

Program 14–3 A Periodic Signal

ptg

504 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

ptg

I / O C O M P L E T I O N P O R T S 505

Comments on the Waitable Timer Example

There are four combinations based on timer type and whether you wait on the
handle or use a completion routine. Program 14–3 illustrates using a completion
routine and a synchronization timer. The four combinations can be tested using
the version of in the Examples file by changing some comments.

Caution: The beep sound may be annoying, so you might want to test this pro-
gram without anyone else nearby or adjust the frequency and duration.

Threadpool Timers

Alternatively, you can use a different type of timer, specifying that the timer call-
back function is to be executed within a thread pool (see Chapter 9).

 is a s imple modif ication to , and it shows how to use
 and . The new program re-

quires a structure for the timer due time, whereas the waitable timer
used a .

I/O Completion Ports

I/O completion ports combine features of both overlapped I/O and independent
threads and are most useful in server programs. To see the requirement for this,
consider the servers that we built in Chapters 11 and 12 (and converted to Windows
Services in Chapter 13), where each client is supported by a distinct worker thread
associated with a socket or named pipe instance. This solution works well when the
number of clients is not large.

Consider what would happen, however, if there were 1,000 clients. The
current model would then require 1,000 threads, each with a substantial amount
of virtual memory space. For example, by default, each thread will consume 1MB
of stack space, so 1,000 threads would require 1GB of virtual address space, and
thread context switches could increase page fault delays.1 Furthermore, the
threads would contend for shared resources both in the executive and in the
process, and the timing data in Chapter 9 showed the performance degradation
that can result. Therefore, there is a requirement to allow a small pool of worker
threads to serve a large number of clients. Chapter 9 used an NT6 thread pool to
address this same problem.

I/O completion ports provide a solution on all Windows versions by allowing
you to create a limited number of server threads in a thread pool while having a
very large number of named pipe handles (or sockets), each associated with a dif-

1This problem is less severe, but should not be ignored, on systems with large amounts of memory.

ptg

506 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

ferent client. Handles are not paired with individual worker server threads;
rather, a server thread can process data on any handle that has available data.

An I/O completion port, then, is a set of overlapped handles, and threads wait
on the port. When a read or write on one of the handles is complete, one thread is
awakened and given the data and the results of the I/O operation. The thread can
then process the data and wait on the port again.

The first task is to create an I/O completion port and add overlapped handles
to the port.

Managing I/O Completion Ports

A single function, , both creates the port and adds
handles. Since this one function must perform two tasks, the parameter usage is
correspondingly complex.

An I/O completion port is a collection of file handles opened in
mode. is an overlapped handle to add to the port. If the value is

, a new I/O completion port is created and returned by
the function. The next parameter, , must be in
this case.

 is the port created on the first call, and it indicates
the port to which the handle in the first parameter is to be added. The function also
returns the port handle when the function is successful; indicates failure.

 specifies the key that will be included in the completion packet
for . The key could be a pointer to a structure containing information
such as an operation type, a handle, and a pointer to the data buffer. Alternatively,
the key could be an index to a table of structures, although this is less flexible.

 indicates the maximum number of threads
allowed to execute concurrently. Any threads in excess of this number that are
waiting on the port will remain blocked even if there is a handle with available
data. If this parameter is , the number of processors in the system is the limit.
The value is ignored except when is (that is,
the port is created, not when handles are added).

ptg

I / O C O M P L E T I O N P O R T S 507

An unlimited number of overlapped handles can be associated with an I/O com-
pletion port. Call initially to create the port and to spec-
ify the maximum number of threads. Call the function again for every overlapped
handle that is to be associated with the port. There is no way to remove a handle from
a completion port; the handle and completion port are associated permanently.

The handles associated with a port should not be used with or
 functions. The Microsoft documentation suggests that the files or

other objects not be shared using other open handles.

Waiting on an I/O Completion Port

Use and , along with overlapped structures (no event
handle is necessary), to perform I/O on the handles associated with a port. The I/O
operation is then queued on the completion port.

A thread waits for a queued overlapped completion not by waiting on an event but
by calling , specifying the completion port. Upon
completion, the function returns a key that was specified when the handle (the one
whose operation has completed) was initially added to the port with

. This key can specify the identity of the actual handle for the
completed operation and other information associated with the I/O operation.

Notice that the Windows thread that initiated the read or write is not neces-
sarily the thread that will receive the completion notification; any waiting
thread can receive completion notification. Therefore, the receiving thread can
identify the handle of the completed operation from the completion key.

Never hold a lock (mutex, , etc.) when you call
, because the thread that releases the lock is proba-

bly not the some thread that acquired it. Owning the lock would not be a good idea
in any case as there is an indefinite wait before the completion notification.

There is also a time-out associated with the wait.

It is sometimes convenient (as in an additional example, , in the
Examples file) to have the operation not be queued on the I/O completion port,

ptg

508 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

making the operation synchronous. In such a case, a thread can wait on the
overlapped event. In order to specify that an overlapped operation should not be
queued on the completion port, you must set the low-order bit in the overlapped
structure’s event handle; then you can wait on the event for that specific
operation. This is an interesting design, but MSDN does document it, although
not prominently.

Posting to an I/O Completion Port

A thread can post a completion event, with a key, to a port to satisfy an outstanding
call to . The func-
tion supplies all the required information.

One common technique is to provide a bogus key value, such as , to wake up
waiting threads, even though no operation has completed. Waiting threads should
test for bogus key values, and this technique can be used, for example, to signal a
thread to shut down.

Alternatives to I/O Completion Ports

Chapter 9 showed how a semaphore can be used to limit the number of ready
threads, and this technique is effective in maintaining throughput when many
threads compete for limited resources.

We could use the same technique with (Program 12–2) and
 (Program 11–3). All that is required is to wait on the semaphore after the

read request completes, perform the request, create the response, and release the
semaphore before writing the response. This solution is much simpler than the I/O
completion port example in the next section. One problem with this solution is that
there may be a large number of threads, each with its own stack space, which will
consume virtual memory. The problem can be partly alleviated by carefully measur-
ing the amount of stack space required. Exercise 14–7 involves experimentation
with this alternative solution, and there is an example implementation in the Ex-
amples file. I/O completion ports also have the advantage that the scheduler posts

ptg

E X A M P L E : A S E R V E R U S I N G I / O C O M P L E T I O N P O R T S 509

the completion to the thread most recently executed, as that thread’s memory is
most likely still in the cache or at least does not need to be paged in.

There is yet another possibility when creating scalable servers. A limited
number of worker threads can take work item packets from a queue (see Chapter
10). The incoming work items can be placed in the queue by one or more boss
threads, as in Program 10–5.

Example: A Server Using I/O Completion Ports

 (Program 14–4) modifies (Program 11–3) to use I/O
completion ports. This server creates a small server thread pool and a larger pool
of overlapped pipe handles along with a completion key for each handle. The
overlapped handles are added to the completion port and a
call is issued. The server threads wait for completions associated with both client
connections and read operations. After a read is detected, the associated client
request is processed and returned to the client (from Chapter 11).

’s design prevents server threads from blocking during I/O opera-
tions or request processing (through an external process). Each client pipe goes
through a set of states (see the type in the list-
ing), and different server threads may process the pipe through stages of the state
cycle. The states, which are maintained in a per-pipe structure, proceed
as follows:

• — The pipe is connected with a server thread.

• — The server thread reads a request from the client and starts
the process from a separate “compute” thread, which calls PostQueued-
CompletionStatus when the process completes. The server thread does not
block, since the process management is in the compute thread.

• — The server thread reads the first temporary file record with the re-
sponse’s first record, and the server thread then writes the record to the client.

• — The server thread sends additional response records, one at a
time, returning to the state until the last response record is sent
to the client.

• — The server thread sends a terminating empty record to the
client.

The program listing does not show familiar functions such as the server
mailslot broadcast thread function.

ptg

510 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

Program 14–4 A Server Using a Completion Port

ptg

E X A M P L E : A S E R V E R U S I N G I / O C O M P L E T I O N P O R T S 511

ptg

512 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

ptg

E X A M P L E : A S E R V E R U S I N G I / O C O M P L E T I O N P O R T S 513

ptg

514 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

ptg

E X A M P L E : A S E R V E R U S I N G I / O C O M P L E T I O N P O R T S 515

ptg

516 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

Summary

Windows has three methods for performing asynchronous I/O; there are examples of
all three, along with performance results, throughout the book to help you decide
which to use on the basis of programming simplicity and performance.

Threads provide the most general and simplest technique. Each thread is re-
sponsible for a sequence of one or more sequential, blocking I/O operations. Fur-
thermore, each thread should have its own file or pipe handle.

Overlapped I/O allows a single thread to perform asynchronous operations on a
single file handle, but there must be an event handle, rather than a thread and file
handle pair, for each operation. Wait specifically for each I/O operation to complete
and then perform any required cleanup or sequencing operations.

Extended I/O, on the other hand, automatically invokes the completion code,
and it does not require additional events.

The one indispensable advantage provided by overlapped I/O is the ability to
create I/O completion ports as mentioned previously and illustrated by a program,

, in the Examples file. A single server thread can serve multiple cli-
ents, which is important if there are thousands of clients; there would not be
enough memory for the equivalent number of servers.

UNIX supports threads through Pthreads, as discussed previously.

System V UNIX limits asynchronous I/O to streams and cannot be used for file or
pipe operations.

ptg

E X E R C I S E S 517

BSD Version 4.3 uses a combination of signals () to indicate an event on a
file descriptor and select a function to determine the ready state of file descrip-
tors. The file descriptors must be set in the mode. This approach works
only with terminals and network communication.

Looking Ahead

Chapter 15 completes the book by showing how to secure Windows objects.

Exercises

14–1. Use asynchronous I/O to merge several sorted files into a larger sorted
file.

14–2. Does the flag improve or per-
formance? Are there any restrictions on file size? Read the MSDN

 documentation carefully.

14–3. Experiment with the and record sizes to determine the per-
formance impact. Is the optimal record size machine-independent? What
results to you get on Window XP and Windows 7?

14–4. Modify (Program 14–3) so that it uses a manual-reset notifica-
tion timer.

14–5. Modify the named pipe client in Program 11–2, , to use over-
lapped I/O so that the client can continue operation after sending the
request. In this way, it can have several outstanding requests.

14–6. Rewrite the socket server, in Program 12–2, so that it uses I/O
completion ports.

14–7. Rewrite either or so that the number of ready
worker threads is limited by a semaphore. Experiment with a large thread
pool to determine the effectiveness of this alternative.

14–8. Use (Program 6–3, the job management program) to bring up a
large number of clients and compare the responsiveness of and

. Networked clients can provide additional load. Determine an
optimal range for the number of active threads.

14–9. Modify to use an NT6 thread pool rather than thread management.
What is the performance impact? Compare your results with those in Ap-
pendix C.

ptg

518 C H A P T E R 1 4 A S Y N C H R O N O U S I N P U T / O U T P U T A N D C O M P L E T I O N P O R T S

14–10. Modify to use overlapped read/write calls with the event wait
immediately following the read/write. This should allow you to cancel I/O
operations with a user APC; try to do so. Also, does this change affect
performance?

14–11. Modify so that there is no limit on the number of clients. Use
 for the

value. You will need to replace the array of structures with dynamically
allocated structures.

14–12. Review ’s error and disconnect processing to be sure all situa-
tions are covered. Fix any deficiencies.

ptg

519

C H A P T E R

15 Securing
Windows
Objects

Windows supports a comprehensive security model that prevents unauthorized
access to objects such as files, processes, and file mappings. Nearly all sharable
objects can be protected, and the programmer has a fine granularity of control
over access rights. Windows has Common Criteria Certification at Evaluation
Assurance Level 4 (EAL-4), an internationally recognized criteria.

Security is a large subject that cannot be covered completely in a single chap-
ter. Therefore, this chapter concentrates on the immediate problem of showing
how to use the Windows security API to protect objects from unauthorized access.
While access control is only a subset of Windows security functionality, it is of
direct concern to those who need to add security features to their programs. The
initial example, Program 15–1, shows how to emulate UNIX file permissions with
NT file system (NTFS) files, and a second example applies security to named
pipes. The same principles can then be used to secure other objects. The bibliogra-
phy lists several resources you can consult for additional security information.

Security Attributes

This chapter explores Windows access control by proceeding from the top down to show
how to construct an object’s security. Following an overview, the Windows functions are
described in detail before proceeding to the examples. In the case of files, it is also possi-
ble to use Windows Explorer to examine and manage some file security attributes.

Nearly any object created with a system call has a security attributes
parameter. Therefore, programs can secure files, processes, threads, events, sema-
phores, named pipes, and so on. The first step is to include a
structure in the call. Until now, our programs have always used a
pointer in calls or have used simply to create inher-

ptg

520 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

itable handles (Chapter 6). In order to implement security, the important element in
the structure is , the pointer to a
security descriptor, which describes the object’s owner and determines which users
are allowed or denied various rights.

An individual process is identified by its access token, which specifies the own-
ing user and group membership. When a process attempts to access an object, the
Windows kernel can determine the process’s identity using the token and can then
decide from the information in the security descriptor whether or not the process
has the required rights to access the object.

Chapter 6 introduced the structure; for review, here
is the complete structure definition:

Set to . indi-
cates whether or not the handle is inheritable by other processes.

Security Overview: The Security Descriptor

Analyzing the security descriptor gives a good overview of essential Windows
security elements. This section mentions the various elements and the names of
the functions that manage them, starting with security descriptor structure.

A security descriptor is initialized with the function
, and it contains the following:

• The owner security identifier (SID) (described in the next section, which deals
with the object’s owner)

• The group SID

• A discretionary access control list (DACL)—a list of entries explicitly granting
and denying access rights. The term “ACL” without the “D” prefix will refer to
DACLs in our discussion.

• A system ACL (SACL), sometimes called an “audit access ACL,” controls audit
message generation when programs access securable objects; you need to have
system administrator rights to set the SACL.

ptg

S E C U R I T Y O V E R V I E W : T H E S E C U R I T Y D E S C R I P T O R 521

 and as-
sociate SIDs with security descriptors, as described in the upcoming “Security
Identifiers” section.

ACLs are initialized using the function and are then associ-
ated with a security descriptor using or

.
Figure 15–1 shows the security descriptor and its components.

Access Control Lists

Each ACL is a set (list) of access control entries (ACEs). There are two types of
ACEs: one for access allowed and one for access denied.

You first initialize an ACL with and then add ACEs. Each
ACE contains a SID and an access mask, which specifies rights to be granted or
denied to the user or group specified by the SID. and

 are typical file access rights.
The two functions used to add ACEs to discretionary ACLs are

 and . is for adding to
an SACL. Finally, remove ACEs with and retrieve them with .

Figure 15–1 Constructing a Security Descriptor

1) InitializeSecurityDescriptor

2) SetSecurityDescriptorOwner

3) SetSecurityDescriptorGroup

4) InitializeAcl

5) AddAccessDeniedAce

· · ·

6) AddAccessAllowedAce

· · ·

7) SetSecurityDescriptorDacl

Process Object

Owner SID

Group SID
User SID

Group SID

Access
Token

Access Control Entry

(Denied)

"

Access Control Entry

(Allowed)

· · ·

Discretionary
ACL

Security
Descriptor

ptg

522 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

Using Windows Object Security

There are numerous details to fill in, but Figure 15–1 shows the basic structure.
Notice that each process also has SIDs (in an access token), which the kernel uses to
determine whether access is allowed. The user’s access token may also give the
owner certain privileges (the ability to perform system operations such as system
shutdown and to access system resources). These user and group privileges are set
when the administrator creates the account.

The kernel scans the ACL for access rights for the user, based on the user’s ID
and group. The first entry that specifically grants or denies the requested service is
decisive. The order in which ACEs are entered into an ACL is therefore important.
Frequently, access-denied ACEs come first so that a user who is specifically denied
access will not gain access by virtue of membership in a group that does have such
access. In Program 15–1, however, it is essential to mix allowed and denied ACEs to
obtain the desired semantics.

Object Rights and Object Access

An object, such as a file, gets its security descriptor at creation time, although the
program can change the security descriptor at a later time.

A process requests access to the object when it asks for a handle using, for ex-
ample, a call to . The handle request contains the desired access,
such as , in one of the parameters. If the security descriptor
grants access to the process, the request succeeds. Different handles to the same
object may have different access rights. The access flag values are the same for
both allowing and denying rights when creating ACLs.

Standard UNIX provides a simpler security model. It is limited to files and based
on file permissions. The example programs in this chapter emulate the UNIX
permissions.

Security Descriptor Initialization

The first step is to initialize the security descriptor using the
 function. Set the parameter to

the address of a valid structure. These structures are
opaque and are managed with specific functions.

Security descriptors are classified as either absolute or self-relative. This dis-
tinction is ignored for now but is explained near the end of the chapter.

ptg

S E C U R I T Y I D E N T I F I E R S 523

 is set to the constant .

Security Descriptor Control Flags

Flags within the structure of the security descriptor, the
 flags, control the meaning assigned to the security de-

scriptor. Several of these flags are set or reset by the upcoming functions and will
be mentioned as needed. and

 access these flags, but the examples do not use
the flags directly.

Security Identifiers

Windows uses SIDs to identify users and groups. The program can look up a SID
from the account name, which can be a user, group, domain, and so on. The
account can be on a remote system. The first step is to determine the SID from an
account name.

Parameters

 and point to the system and account names.
Frequently, is to indicate the local system.

ptg

524 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

 is the returned information, which is of size . The function will
fail, returning the required size, if the buffer is not large enough.

 is a string of length
characters. The length parameter should be initialized to the buffer size (use the
usual techniques to process failures). The return value shows the domain where
the name is found. The account name will return ,
whereas a user account name will return that same user name.

 points to a (enumerated type) variable and can be
tested for values such as , ,

, and so on.

Getting the Account and User Names

Given a , you reverse the process and obtain the account name using
. Specify the SID and get the name in return. The account name can be any

name available to the process. Some names, such as , are well known.

Obtain the process’s user account name (the logged-in user) with the
 function.

The user name and length are returned in the conventional manner.
Create and manage SIDs using functions such as and

. The examples confine themselves, however, to
SIDs obtained from account names.

ptg

M A N A G I N G A C L S 525

Once SIDs are known, they can be entered into an initialized security descriptor.

 points to the appropriate security descriptor, and
 (or) is the address of the owner’s (group’s) SID. As always in such

situations, assure that these SIDs were not prematurely freed.
 (or) indicates, if , that a default

mechanism is used to derive the owner (or primary group) information. The
 and flags within the
 structure are set according to these two parameters.

The similar functions and
 return the SID (either owner or group) from a security

descriptor.

Managing ACLs

This section shows how to manage ACLs, how to associate an ACL with a security
descriptor, and how to add ACEs. Figure 15–1 shows the relationships between
these objects and functions.

The first step is to initialize an ACL structure. The ACL should not be
accessed directly, so its internal structure is not relevant. The program must,
however, provide a buffer to serve as the ACL; the functions manage the contents.

ptg

526 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

 is the address of a programmer-supplied buffer of bytes. Subse-
quent discussion and Program 15–4 will show how to determine the ACL size, but
1KB is more than adequate for most purposes. should be

.
Next, add the ACEs in the order desired with the

and functions.

 points to the same ACL structure initialized with , and
 is . points to a SID, such as one that would

be obtained from .
The access mask () determines the rights to be granted or

denied to the user or group specified by the SID. The predefined mask values will
vary by the object type.

The final step is to associate an ACL with the security descriptor. In the case
of the discretionary ACL, use the function.

ptg

E X A M P L E : U N I X - S T Y L E P E R M I S S I O N F O R N T F S F I L E S 527

, if , indicates that there is an ACL in the structure.
If , and , the next two parameters, are ignored. The

’s flag is also set to this
parameter’s value.

The final flag is . indicates an ACL generated by the
programmer. indicates that the ACL was obtained by a default mechanism,
such as inheritance. The flag in the

 is set to this parameter value.
Other functions delete ACEs and read ACEs from an ACL; we discuss them

later in this chapter. It is now time for an example.

Example: UNIX-Style Permission for NTFS Files

UNIX file permissions provide a convenient way to illustrate Windows security,
even though Windows security is much more general than standard UNIX
security.

First, however, here is a very quick review of UNIX file permissions (directo-
ries are treated slightly differently).

• Every file has an owning user and group.

• Every file has 9 permission bits, which are specified as 3 octal (base 8) digits.

• The 3 bits in each octal digit grant, or deny, read (high-order bit), write, and
execute (low-order bit) permission. Read, write, and execute permissions are
displayed as , , and respectively. Execute rights are meaningful for
and files but not for files.

• The 3 octal digits, from left to right, represent rights given to the owner, the
group, and to everyone else.

• Thus, if you set the permissions to , the permissions will be displayed as
. The file owner can read and write the file, group members can

read it, and everyone else has no access.

ptg

528 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

The implementation creates nine ACEs to grant or deny read, write, and exe-
cute permissions to the owner, group, and everyone. There are two commands.

1. sets the permissions and is modeled after the UNIX command.
The implementation has been enhanced to create the specified file if it does
not already exist and to allow the user to specify the group name.

2. displays the permissions along with other file information and is an ex-
tension of the command (Program 3–2). When the long listing is requested,
the command displays the owning user and an interpretation of the existing
ACLs, which may have been set by .

Programs 15–1 and 15–2 show the implementation for these two commands.
Programs 15–3, 15–4, and 15–5 show three supporting functions:

1. , which creates a valid security attributes structure cor-
responding to a set of UNIX permissions. This function is general enough that
it can be used with objects other than files, such as processes (Chapter 6),
named pipes (Chapter 11), and synchronization objects (Chapter 8).

2. .

3. .

Note: The separate array assures that rights
are never denied because the flag is set in all three of the macros,

, , and ,
which are combinations of several flags (see the include file,). The full pro-
gram in the Examples file provides additional explanation.

The programs that follow are simplifications of the programs from the Exam-
ples file. For example, the full program checks to see if there is a group name on the
command line; here, the name is assumed. Also, there are command line flags to
create a file that does not exist and to suppress the warning message if the change
fails.

Program 15–1 Change File Permissions

ptg

E X A M P L E : U N I X - S T Y L E P E R M I S S I O N F O R N T F S F I L E S 529

Program 15–2 shows the relevant part of —namely, the
function. Other parts of the program are similar to Chapter 3’s Program 3–2.

ptg

530 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

Program 15–2 List File Permissions

The next step is to show the supporting function implementations. However,
Run 15–2 first shows the two new commands in operation. First, a new file is cre-
ated, and its permissions are seen to be (the owner can read, write, and execute
the file; others have no rights). Next, the owner’s write permission is removed, and
an attempt to write to the file is denied. Once the write permissions are restored,

ptg

E X A M P L E : I N I T I A L I Z I N G S E C U R I T Y A T T R I B U T E S 531

the file write succeeds, and the file listing (command) shows that the new text
is at the end of the file. Finally, others are given read permission.

Example: Initializing Security Attributes

Program 15–3 shows the utility function , which creates a
security attributes structure containing an ACL with ACEs that emulate UNIX
file permissions. There are nine ACEs granting or denying read, write, and
execute permissions for the owner, the group, and everyone else. The actual array
of three rights (read, write, and execute for files) can vary according to the object
type being secured. This structure is not a local variable in the function but must
be allocated and initialized and then returned to the calling program; notice the
ACE mask arrays in Program 15–1.

Two aspects of this program are interesting and could be modified (see the ex-
ercises).

• The function creates a heap and allocates memory from the heap. This greatly
simplifies destroying the SA (is at the end). The heap is re-
turned from the function; alternatively, you could create an opaque structure
containing the heap and the SA.

Run 15–2 UNIX-like File Permissions

ptg

532 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

• The SDs in the SA are “absolute” rather than self-relative; a later section
talks about this some more.

Program 15–3 Initializing Security Attributes

ptg

E X A M P L E : I N I T I A L I Z I N G S E C U R I T Y A T T R I B U T E S 533

ptg

534 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

Comments on Program 15–3

Program 15–3 may have a straightforward structure, but its operation is hardly
simple. Furthermore, it illustrates several points about Windows security that
need review.

• Several memory allocations are required to hold information such as the SIDs.
They are created in a dedicated heap, which the calling program eventually
destroys. The advantage is that it’s simple to free the allocated memory (there
are seven allocations) with a single call.

• The security attribute structure in this example is for files, but it is also used
with other objects such as named pipes (Chapter 11). Program 15–4 shows
how to integrate the security attributes with a file.

• To emulate UNIX behavior, the ACE entry order is critical. Notice that access-
denied and access-allowed ACEs are added to the ACL as the permission bits
are processed from left (/) to right (/). In this
way, permission bits of, say, (in octal) will deny write access to the user
even though the user may be in the group.

ptg

R E A D I N G A N D C H A N G I N G S E C U R I T Y D E S C R I P T O R S 535

• The ACEs’ rights are access values, such as and
, which are similar to the flags used with

. The calling program (Program 15–1 in this case) specifies the rights
that are appropriate for the object.

• The defined constant is large enough to contain the nine ACEs.
After Program 15–5, it will be apparent how to determine the required size.

• The function uses three SIDs, one each for , , and .
Three different techniques are employed to get the name to use as an argu-
ment to . The user name comes from , or
get the user SID from the current token without getting the user name (also
avoiding the problem of getting an impersonating name; this is Exercise 15–5).
The name for everyone is in a . The
group name is a command line argument and is looked up as a

. Finding the groups that the current user belongs to requires some
knowledge of process token, and solving this problem is Exercise 15–12. Inci-
dentally, finding the groups of an arbitrary user is fairly complex.

• The version of the program in the Examples file, but not the one shown here,
is fastidious about error checking. It even goes to the effort to validate the gen-
erated structures using the self-explanatory ,

, and functions. This error testing proved to be
helpful during debugging.

Reading and Changing Security Descriptors

Now that a security descriptor is associated with a file, the next step is to
determine the security of an existing file and, in turn, change it. The following
functions get and set file security in terms of security descriptors.

)

ptg

536 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

 is an enumerated type that takes on values such as
, ,

, and to indicate what part of the
security descriptor to get or set. Combine these values with the bit-wise “or” operator.

To figure out the size of the return buffer for , the best
strategy is to call the function twice. The first call simply uses as the
value. After allocating a buffer, call the function a second time. Program 15–4
operates this way.

Needless to say, the correct file permissions are required in order to carry out
these operations. For example, it is necessary to have permission or to
be the object’s owner to succeed with .

The functions and
 can extract the SIDs from the security descriptor obtained

with . Obtain the ACL with the
 function.

The parameters are nearly identical to those of
 except that the flags are returned to indicate whether a discretionary ACL is

actually present and was set as a default or by a user.
To interpret an ACL, first find out how many ACEs it contains.

In most cases, the ACL information class, , is
, and the parameter is a structure of type

. is the other value for the class.

ptg

E X A M P L E : R E A D I N G F I L E P E R M I S S I O N S 537

An structure has three members: the most impor-
tant one is , which shows how many entries are in the list. To determine
whether the ACL is large enough, look at the and

 members of the structure.
The function retrieves ACEs by index.

Obtain the ACEs (the total number is now known) by using an index.
points to an structure, which has a member called , which, in turn,
has an member. Test the ACE type for and

.

Example: Reading File Permissions

Program 15–4 is the function , which Programs 15–1 and
15–2 use. This program methodically uses the preceding functions to extract the
information. Its correct operation depends on the fact that the ACL was created by
Program 15–3. The function is in the same source module as Program 15–3, so the
definitions are not repeated.

Program 15–4 Reading Security Attributes

ptg

538 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

Example: Changing File Permissions

Program 15–5 completes the collection of file security functions. This function,
, replaces the existing security descriptor with a new

one, preserving the user and group SIDs but creating a new discretionary ACL.

ptg

S E C U R I N G K E R N E L A N D C O M M U N I C A T I O N O B J E C T S 539

Program 15–5 Changing Security Attributes

Securing Kernel and Communication Objects

The preceding sections were concerned mostly with file security, and the same
techniques apply to other filelike objects, such as named pipes (Chapter 11), and
to kernel objects. Program 15–6, the next example, deals with named pipes, which
can be treated in much the same way as files.

Securing Named Pipes

While the code is omitted in the Program 11–3 listing, the server (whose full code
appears in the Examples file) optionally secures its named pipe to prevent access
by unauthorized clients. Optional command line parameters specify the user and
group name.

If the user and group names are omitted, default security is used. Note that the
full version of Program 11–3 (in the Examples file) and Program 15–6 use tech-
niques from Program 15–3 to create the optional security attributes. However,

ptg

540 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

rather than calling , we now use a simpler function,
, which only creates access-allowed ACEs. Program 15–6 shows

the relevant code sections that were not shown in Program 11–3. The important
security rights for named pipes are follows:

•

•

These two values provide rights. The server in Program 15–6
optionally secures its named pipe instances using these rights. Only clients
executed by the owner have access, although it would be straightforward to allow
group members to access the pipe as well.

Program 15–6 Securing a Named Pipe

ptg

E X A M P L E : S E C U R I N G A P R O C E S S A N D I T S T H R E A D S 541

Kernel and Private Object Security

Many objects, such as processes, threads, and mutexes, are kernel objects. To get
and set kernel security descriptors, use and

, which are similar to the file security functions
described in this chapter. However, you need to know the access rights appropriate
to an object; the next subsection shows how to find the rights.

It is also possible to associate security descriptors with private, programmer-
generated objects, such as a proprietary database. The appropriate functions are

 and . The program-
mer must take responsibility for enforcing access and must provide security descrip-
tors with calls to and

.

ACE Mask Values

The “user, group, everyone” model that implements will be adequate
in many cases, although different models are possible using the same basic
techniques.

It is necessary, however, to determine the actual ACE mask values appro-
priate for a particular kernel object. The values are not always well documented,
but there are several ways to determine the values for different kernel objects.

• Read the documentation for the open call for the object in question. The access
flags are the same as the flags in the ACE mask. For example,
uses and (the second flag is required for
any object that can be used with or

). Other objects, such as processes, have many additional access
flags.

• The “create” documentation may also supply useful information.

• Inspect the header files and for flags that apply to the object.

Example: Securing a Process and Its Threads

The documentation shows a fine-grained collection of access rights,
which is appropriate considering the various functions that can be performed on a
process handle. For example, access is required on a pro-
cess handle in order for a process (actually, a thread within that process) to termi-
nate the process that the handle represents.
access is required in order to perform or

ptg

542 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

 on a process handle. permits all access, and
 access is required to perform a wait function.

To illustrate these concepts, upgrades Chapter 6’s
 job management program so that only the owner (or administrator) can

access the managed processes. The program is in the Examples file.

Overview of Additional Security Features

There is much more to Windows security, but this chapter is an introduction,
showing how to secure Windows objects using the security API. The following
sections give a brief overview of additional security subjects that some readers
will want to explore.

Removing ACEs

The function deletes an ACE specified by an index, in a manner
similar to that used with .

Absolute and Self-Relative Security Descriptors

Program 15–5, which changed ACLs, had the benefit of simply replacing one
security descriptor (SD) with another. To change an existing SD, however, some
care is required because of the distinction between absolute (ASD) and self-
relative SDs (SRSD). The internal details of these data structures are not
important for our purposes, but it is important to understand why there are two
distinct SD types and how to convert between them.

• During construction, an SD is absolute, with pointers to various structures in
memory. creates an absolute SD. An ab-
solute SD cannot be associated with a permanent object, such as a file, be-
cause the structure refers to memory addresses. However, an absolute SD is
easy to modify and is fine for a process, thread, event, or other object that is
not persistent and is represented by in-memory data structures.

• When the SD is associated with a permanent object, Windows consolidates the
SD into a compact “self-relative” structure (SRSD) that can be associated with
the object in the file system.

• An SRSD is more compact and more appropriate to pass as a function argu-
ment, but it is difficult to change.

ptg

O V E R V I E W O F A D D I T I O N A L S E C U R I T Y F E A T U R E S 543

• It is possible to convert between the two forms using Windows functions for that
purpose. Use to convert an SRSD, such as the one returned
by . Modify the ASD and then use to
convert it back. is one of the more formidable Windows func-
tions, having 11 parameters: two for each of the four SD components, one each
for the input and output SDs, and one for the length of the resulting absolute
SD.

 constructs a SA containing multiple ASDs. Exercise 15–16
suggests using only SRSDs.

System ACLs

There is a complete set of functions for managing system ACLs; only system ad-
ministrators can use it. System ACLs specify which object accesses should be
logged. The principal function is , which is similar to

. There is no concept of access denied with system ACLs.
Two other system ACL functions are and

. These functions are comparable to their discre-
tionary ACL counterparts, and

.

Access Token Information

Program 15–1 did not solve the problem of obtaining the groups associated with a
process in its access token. Program 15–1 simply required the user to specify the
group name. You use the function for this, providing a
process handle (Chapter 6). Exercise 15–12 addresses this issue, providing a hint
toward the solution. The solution code is also included in the Examples file.

SID Management

The examples obtained SIDs from user and group names, but you can also create
new SIDs with the function. Other functions
obtain SID information, and you can even copy () and compare
() SIDs.

ptg

544 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

Summary

Windows implements an extensive security model that goes beyond the one of-
fered by standard UNIX. Programs can secure all objects, not just files. The exam-
ple programs have shown how to emulate the UNIX permissions and ownership
that are set with the , , and functions. Programs can also set
the owner (group and user). The emulation is not easy, but the functionality is
much more powerful. The complexity reflects the complexity of the requirements.

Looking Ahead

This chapter completes our presentation of the Windows API.

Additional Reading

Windows

Microsoft Windows Security Resource Kit, Second Edition, by Smith, Komar, and
the Microsoft Security Team, and Microsoft Windows Server 2003 PKI and Certifi-
cate Security, by Brian Komar, provide in depth coverage.

Windows Design and Architecture

Windows Internals: Including Windows Server 2008 and Windows Vista, Fifth
Edition, by Solomon, Russinovich, and Ionescu, describes details of Windows secu-
rity internal implementation.

Common Criteria

See www.commoncriteriaportal.org/thecc.html for information about the Common
Criteria levels and the Common Criteria Recognition Agreement.

Exercises

15–1. Extend Program 15–1 so that multiple groups have their own unique
permissions. The group name and permission pairs can be separate
arguments to the function.

15–2. Extend Program 15–4 so that it can report on all the groups that have
ACEs in the object’s security descriptor.

15–3. Confirm that has the desired effect of limiting file access.

www.commoncriteriaportal.org/thecc.html

ptg

E X E R C I S E S 545

15–4. Investigate the default security attributes you get with a file.

15–5. What are some of the other access masks you can use with an ACE? The
Microsoft documentation supplies some information.

15–6. Enhance both and so that they produce an error message if
asked to deal with a file on a non-NTFS file system.

 is required.

15–7. Enhance the command so that there is an option to set the
owning user to be the user of the program.

15–8. Determine the actual size of the ACL buffer that Program 15–3 needs to
store the ACEs. Program 15–3 uses 1,024 bytes. Can you determine a for-
mula for estimating the required ACL size?

15–9. The Cygwin Web site (www.cygwin.com) provides an excellent open source
Linux-like environment on Windows with a shell and implementations of
commands including and . Install this environment and compare
the implementations of these two commands with the ones developed
here. For example, if you set file permissions using the Cygwin command,
does properly show the permissions, and conversely? Compare the
Cygwin source code with this chapter’s examples to contrast the two ap-
proaches to using Windows security.

15–10. The compatibility library contains functions and , which
manage file permissions. Investigate their emulation of UNIX file
permissions and compare it with the solutions in this chapter.

15–11. Write a command, , that will display your logged-in user name.

15–12. Program 15–3, which created a security descriptor, required the
programmer to supply the group name. Modify the program so that it
creates permissions for all the user’s groups. Hint: Use the

 function, which returns an array with the group
names, although you will need to experiment to find out how the array
stores group names. The source program in the Examples file contains a
partial solution.

15–13. Note in the client/server system that the clients can access exactly the
same files and other objects that are available to the server on the server’s
machine with the server’s access rights. Remove this limitation by imple-
menting security delegation using the functions

 and . Clients that are not in the group
used to secure the pipe cannot connect to the server.

www.cygwin.com

ptg

546 C H A P T E R 1 5 S E C U R I N G W I N D O W S O B J E C T S

15–14. There are several additional Windows functions that you may find useful
and that could be applied to simplify or improve this chapter’s examples.
Look up the following functions: ,

, , and . Can you use
these functions to simplify or improve the examples?

15–15. (Program 15–1) calls , and a code comment
suggests an alternative, getting the SID from the current token, to avoid
an impersonation problem. Implement and test that change.

15–16. uses a heap to simplify destroying the SA structure.
An alternative, and arguably superior, method would be to convert all the
SDs to be self-relative, use normal () allocations, and use .
However, if fails before completing, be sure to free
the memory that has been allocated.

ptg

547

A P P E N D I X

A Using the
Sample
Programs

The book’s support Web site (www.jmhartsoftware.com) contains a zip file (the
Examples file) with the source code for all the sample programs as well as the include
files, utility functions, projects, and executables. A number of programs illustrate
additional features and solve specific exercises, although the Examples file does not
include solutions for all exercises or show every alternative implementation.

• All programs have been tested on Windows 7, Vista, XP, Server 2008, and Server
2003 on a wide variety of systems, ranging from laptops to servers. Where
appropriate, they have also been tested at one time or another under Windows 9x,
although many programs, especially those from later chapters, will not run on
Windows 9x or even on NT 4.0, which is also obsolete.

• With a few minor exceptions, nearly all programs compile without warning
messages under Microsoft Visual Studio 2005 and 2008 using warning level 3.
Visual Studio 2010 (a beta version) easily converted several programs.

• Distinct project directories are provided for Microsoft Visual Studio 2005 and
2008 (32- and 64-bit). The three project directories are ,

, and . The projects build the executable pro-
grams in the , , and directories, respectively. VS
2010 project and run directories will appear in an updated Examples file after VS
2010 is released.

• There is a separate zip file with Visual Studio C++ 6.0 and 7.0 projects; some
readers may find these projects convenient, but they are not up to date.

• The generic C library functions are used extensively, as are compiler-specific
keywords such as , , and . The multithreaded C run-
time library, , and are essential starting
with Chapter 7.

www.jmhartsoftware.com

ptg

548 A P P E N D I X A U S I N G T H E S A M P L E P R O G R A M S

• The projects are in release, not debug, form. The projects are all very simple,
with minimal dependencies, and can also be created quickly with the desired
configuration and as either debug or release versions.

• The projects are defined to build all programs, with the exception of static or
dynamic libraries, as console applications.

You can also build the programs using open source development tools, such as
 and in the Gnu Compiler Collection (http://gcc.gnu.org/). Readers inter-

ested in these too ls shou ld look at the MinGW open sourc e pro ject
(www.mingw.org), which describes MinGW as “a port of the GNU Compiler Col-
lection (GCC), and GNU Binutils, for use in the development of native Microsoft
Windows applications.” I have tested only a few of the programs using these tools,
but I have had considerable success using MinGW and have even been able to
cross-build, constructing Windows executable programs and DLLs on a Linux sys-
tem. Furthermore, I’ve found that and provide very useful 64-bit warning
and error messages.

Examples File Organization

The primary directory is named (“Windows System Programming,
Edition 4 Examples”), and this directory can be copied directly to your hard disk.
There is a source file subdirectory for each chapter. All include files are in the

 directory, and the directory contains the common functions such
as . Complete projects are in the project directories. Executables and
DLLs for all projects are in the run directories.

Download (“Windows Sample Programs, Edition 3”) if you
want to use Visual Studio 6 or Visual Studio 7.

ReadMe.txt

Everything else you need to know is in the file, where you will find
information about:

• The directories and their contents

• The source code, chapter by chapter

• The include files

• Utility functions

http://gcc.gnu.org/
www.mingw.org

ptg

549

A P P E N D I X

B Source Code
Portability:
Windows, UNIX,
and Linux

A common, but not universal, application requirement, especially for server ap-
plications, is that the application must run on some combination of Windows,
Linux, and UNIX.1 This requirement leads to the need for “source code portabil-
ity” whereby:

• There is a single set of source code for all target platforms.

• Macros and build parameters define the target platform, which could be any of
the three operating systems, along with choices of processor architecture, 32-
bit or 64-bit, and operating system vendor.

• Conditional compilation statements, while unavoidable, should be minimal,
and the bulk of the source code should be the same for all target platforms.

• The source code is compatible with a wide variety of compilers.

• Performance, resource requirements, and other application characteristics
should be similar for all targets.

With sufficient care and some exceptions, you can meet these requirements
and build nontrivial source code portable applications. This discussion assumes,
however, that there is no GUI interface. This appendix starts by describing some

1 More precisely, “UNIX” means the POSIX functions specified in The Single UNIX Specification
(www.opengroup.org/onlinepubs/007908799/). UNIX and Linux implement this specification. In turn,
the specification has its historical origins in UNIX.

www.opengroup.org/onlinepubs/007908799/

ptg

550 A P P E N D I X B S O U R C E C O D E P O R T A B I L I T Y : W I N D O W S , U N I X , A N D L I N U X

techniques that have been successful and have met all the requirements. There
are, of course, other ways to achieve source code portability beyond what is de-
scribed here.

The discussion is limited to the POSIX API that is comparable to the topics in
this book, and the discussion is not concerned with the complete POSIX environ-
ment. However, it’s worth pointing out that Cygwin (www.cygwin.com) provides
an excellent open source set of POSIX commands and utilities for Windows.

After the discussion are tables that list the Windows functions and their
POSIX equivalents, if any. The tables are organized by chapter.

Source Code Portability Strategies

There are several ways to tackle this problem, although there is no single strategy
suitable for all functionality areas. Viable strategies, not always mutually exclu-
sive, include:

• Use libraries, possibly open source or Microsoft-provided, that emulate POSIX
functions on Windows. This strategy is common and successful, with some
examples in this appendix.

• Use libraries, possibly open source, that emulate Windows functions on UNIX/
Linux. This strategy is rare, and there are no examples here.

• Use industry-standard functions that Microsoft supports directly. This is also
a common and successful strategy for some functionality.

• Use macros instead of libraries to emulate one OS under the other. This strat-
egy is also rare, but there is one example in this appendix.

Windows Services for UNIX

Windows Services for UNIX (SFU) is a Microsoft product that provides a UNIX
subsystem, also called Interix, for Windows. The subsystem is implemented in
user space on the NT kernel. The current version is 3.5, and you can download it
from the Microsoft Web site.

In principle, SFU should satisfy all the requirements. Unfortunately, at publi-
cation time, Microsoft plans to discontinue support (the plans were announced in
2005). For example, the Web site states that the supported operating systems are
“Windows 2000; Windows 2000 Service Pack 3; Windows 2000 Service Pack 4; Win-
dows Server 2003; Windows XP.” Furthermore, “the product will not install on Win-
dows 9x or Windows XP Home Edition or Windows Vista. The product should not be
installed on Windows Server 2003 R2. This is an unsupported configuration.”

www.cygwin.com

ptg

S O U R C E C O D E P O R T A B I L I T Y F O R W I N D O W S F U N C T I O N A L I T Y 551

The Wikipedia entry (http://en.wikipedia.org/wiki/Microsoft_Windows_
Services_for_UNIX) says, “SFU will be available for download until 2009; general
support will continue until 2011; extended support until 2014,” and citations to
the trade press support this statement.

Source Code Portability for Windows Functionality

The following sections describe some techniques, arranged by chapter order. Some
areas are easier than others, and in some cases, there are no straightforward
solutions.

File and Directory Management

The Standard C library (CLIB) will support normal file I/O without significant
performance impact. However, CLIB does not provide directory management,
among other limitations.

Another possible solution is to use the normal POSIX functions, such as
and and the corresponding Windows functions (see Chapter 1 and the
project), such as and . A simple header file, in the Examples file,
allows you to use the POSIX function names in the source code. The header file also
includes definitions to support time, file attributes, and file locking.

There is no POSIX equivalent to the registry.

Exception and Signal Handling

POSIX signal handling is difficult to emulate in Windows except for a few special
cases described in Chapter 4. However, you can write in C++ rather than C and
use C++ exception handling rather than Structured Exception Handling (SEH) to
achieve some of the requirements.

Memory Management and Memory-Mapped File I/O

There are several aspects to portable memory management code.

• The CLIB functions , , , and are sufficient in
most cases for application memory management.

• POSIX does not have functions equivalent to the Windows heap management
functions, and Chapter 5 describes some heap management advantages.
There are, however, open source solutions, available on Windows and UNIX/
Linux, that provide the heap management benefits. One such solution is

http://en.wikipedia.org/wiki/Microsoft_Windows_Services_for_UNIX
http://en.wikipedia.org/wiki/Microsoft_Windows_Services_for_UNIX

ptg

552 A P P E N D I X B S O U R C E C O D E P O R T A B I L I T Y : W I N D O W S , U N I X , A N D L I N U X

“Hoard: A Scalable Memory Allocator for Multithreaded Applications”
(www.cs.umass.edu/~emery/hoard/asplos2000.pdf).

• Memory-mapped file I/O provides similar performance and programming sim-
plicity advantages on all operating systems. The Web site’s (multi-
threaded word count) example includes portable file memory-mapping code
that has been tested on multiple target systems.

Process Management

Windows allows you to emulate the POSIX se-
quence, as described in Chapter 6. The principal difficulties arise in:

• Emulating the various options to specify the command line and environ-
ment variables

• Passing handles to the child process

• Managing the parent-child relationships, which Windows does not support

I am not aware of a good open source solution to the process management prob-
lem. However, it’s worth mentioning that I’ve successfully developed a library, us-
able from all OSs, that provides a significant subset of the POSIX process
management functionality. This subset was sufficient for the project needs. How-
ever, the code was developed under nondisclosure, so it’s not in the Examples file.
Suffice it to say, however, that the task was not difficult and required about two
days of work.

Thread Management and Synchronization

Thread management and synchronization portability, at first sight, may seem to
be intractable, considering the need for correct operation on a wide variety of plat-
forms. Fortunately, it is not difficult at all. Here is one successful approach.

• Develop your source code using the Pthreads API (www.unix.org/version3/
ieee_std.html)

• Use the open source Pthreads library for Windows (http://sources.redhat.com/
pthreads-win32/)

This open source library provides good performance, compatible with native
Windows code. However, at publication time, it does not yet support slim reader/

www.cs.umass.edu/~emery/hoard/asplos2000.pdf
www.unix.org/version3/ieee_std.html
www.unix.org/version3/ieee_std.html
http://sources.redhat.com/pthreads-win32/
http://sources.redhat.com/pthreads-win32/

ptg

S O U R C E C O D E P O R T A B I L I T Y F O R W I N D O W S F U N C T I O N A L I T Y 553

writer locks (Chapter 9) or thread pools. However, the library is open source, and
upgrading this library would be a worthwhile contribution.

I’ve also had success with a simple set of macros that nicely emulate nearly all
Pthreads functionality in Windows. In this case, the client did not want to use
open source code. The macros are on the book’s Web site.

Interprocess Communication and Network Programming

This problem also has multiple aspects.

• One-directional pipes (Chapter 12) are fairly close in Windows and POSIX,
and they are usually associated with process management (mentioned in a
previous section).

• Windows supports the sockets API and provides the simplest portability and
interoperability strategy for network programming and interprocess commu-
nication, even on a single system.

• Named pipes and mailslots are Windows-specific and are best avoided in por-
table source code.

Services

Windows Services correspond very roughly to POSIX “daemons.” Service and dae-
mon management are administrative functions, and there is no direct way to pro-
vide portable source code that uses the Windows Services functions.

Asynchronous I/O

The Windows and POSIX models for asynchronous I/O are considerably different.
I’ve found that it’s simplest to use threads and avoid asynchronous I/O altogether,
although this is a matter of personal taste.

Windows, POSIX, and C Library Comparison Tables

The following tables show the Windows functions described in the main text along
with the corresponding UNIX/Linux and ANSI Standard C library functions, if
any.

The tables are arranged by chapter (some chapters are combined). Within
each chapter, they are sorted first by functionality area (file system, directory
management, and so on) and then by the Windows function name.

Each table row gives the following information:

ptg

554 A P P E N D I X B S O U R C E C O D E P O R T A B I L I T Y : W I N D O W S , U N I X , A N D L I N U X

• The functionality area (subject)

• The Windows function name

• The corresponding UNIX function name, in some cases, more than one

• The corresponding C library function name, if any

• Comments as appropriate

The notation used in the tables requires some explanation.

• The Microsoft Visual Studio library contains some UNIX compatibility func-
tions. For example, is the compatibility library function for UNIX

. If the UNIX function is in italics, there is a compatibility function. An
asterisk next to the name indicates that there is also a wide character Unicode
version. For example, there is a function.

• A program that uses just the Standard C library, and no Windows or UNIX system
functions, should compile, build, and run on both systems if normal precautions are
taken. Such a program will, however, be limited to file and I/O operations.

• Commas separating functions indicate alternatives, often using different
characteristics or emulating one aspect of the Windows function.

• Semicolons separating functions indicate that you use the functions in se-
quence to emulate the Windows function. Thus, corresponds
roughly to .

• An underlined entry indicates a global variable, such as .

• In a few cases, the UNIX equivalent may be stated imprecisely in terms such
as “terminal I/O” for Windows functions such as . Often, “Use
C library” is the appropriate comment, as in the case of .
In other cases, the situation is reversed. Thus, under the UNIX signal man-
agement functions (and so on), the Windows entry is “Use SEH,
VEH” to indicate that the programmer should set up structured or vectored
exception handlers and filter functions to get the desired behavior. Unlike
UNIX, Windows does not support process groups, so the Windows entries are
“N/A,” although job management, as done by the programs in Chapter 6, could
emulate process relationships.

• There are numerous N/A entries, especially for the C library, if there is no
comparable function or set of functions. This is the case, for example, with
directory management.

ptg

S O U R C E C O D E P O R T A B I L I T Y F O R W I N D O W S F U N C T I O N A L I T Y 555

• The POSIX threads (Pthreads) functions are the UNIX equivalents shown in
the tables for Chapters 7 through 10, even though they are not properly a part
of UNIX.

Generally, the correspondence is more precise in the earlier chapters, particu-
larly for file management. The systems tend to diverge with the more advanced
functionality, and in many cases, there is no C library equivalent. For example,
the UNIX and Windows security models differ significantly, so the relationships
shown are, at best, approximations.

These functional correspondences are not exact. There are many differences,
small and large, among the three systems. Therefore, these tables are only for
guidance. The individual chapters discuss many of the differences.

ptg

556 A P P E N D I X B S O U R C E C O D E P O R T A B I L I T Y : W I N D O W S , U N I X , A N D L I N U X

Chapters 2 and 3: File and Directory Management

Table B–1 Chapters 2 and 3: File and Directory Management

Subject Windows UNIX C Library Comments

Console I/O terminal I/O N/A

Console I/O terminal I/O N/A

Console I/O

Console I/O N/A

Console I/O

Directory
Mgt

N/A Make a new
directory

Directory
Mgt

N/A Close a
directory search
handle

Directory
Mgt

N/A Find first file
matching a
pattern

Directory
Mgt

N/A Find
subsequent files

Directory
Mgt

N/A

Directory
Mgt

N/A N/A

Directory
Mgt

Well-known
pathnames

N/A

Directory
Mgt

Directory
Mgt

Use N/A Search for a file
on a specified
path

ptg

C H A P T E R S 2 A N D 3 : F I L E A N D D I R E C T O R Y M A N A G E M E N T 557

Directory
Mgt

N/A Change the
working
directory

Error
Handling

Error
Handling

Global variable

Error
Handling

Global variable

File
Locking

…)

N/A

File
Locking

…)

N/A

File
Locking

…)

N/A

File
Locking

…)

N/A

File System (file
handle) is not limited to

files

File System Duplicate a file

File System Open/create a
file

File System Delete a file

File System Write file
buffers

File System N/A

Table B–1 Chapters 2 and 3: File and Directory Management (cont.)

Subject Windows UNIX C Library Comments

ptg

558 A P P E N D I X B S O U R C E C O D E P O R T A B I L I T Y : W I N D O W S , U N I X , A N D L I N U X

File System N/A Fill structure
with file info

File System Get length of
file in bytes

File System N/A

File System N/A Check for
character
stream device
or file

File System Use file desc 0,
1, or 2

Use ,
,

File System Use C library Create a unique
file name

File System Use C library Create a
temporary file

File System N/A Directory for
temp files

File System Use C library Rename a file or
directory

File System N/A Windows does
not support
links

File System N/A N/A Create a
symbolic link

File System N/A N/A Read name in a
symbolic link

File System N/A, returns
0 bytes

N/A,
returns 0 bytes

Rest for end of
file

File System N/A, use multiple
s

N/A, use
multiple

Scatter read

Table B–1 Chapters 2 and 3: File and Directory Management (cont.)

Subject Windows UNIX C Library Comments

ptg

C H A P T E R S 2 A N D 3 : F I L E A N D D I R E C T O R Y M A N A G E M E N T 559

File System N/A, use multiple
s

N/A, use
multiple

Gather write

File System Read data from
a file

File System N/A

File System N/A

File System Set file pointer

FileSystem (to 0)

File System N/A

File System
or

 or

File System Write data to a
file

System Info N/A N/A

System Info N/A

System Info N/A

System Info N/A N/A

System Info N/A

System Info Various defined
constants

N/A

Time Use C library

Table B–1 Chapters 2 and 3: File and Directory Management (cont.)

Subject Windows UNIX C Library Comments

ptg

560 A P P E N D I X B S O U R C E C O D E P O R T A B I L I T Y : W I N D O W S , U N I X , A N D L I N U X

Time See program,
Program 3–2

Use C library

Time Use C library Compare
“calendar”
times

Time Use C library

Time Use C library

Time Use C library

Time See program,
Program 3–3

Use C library

Time N/A N/A

Time N/A N/A

Time Subtract file times Use C library

Time Use C library

Table B–1 Chapters 2 and 3: File and Directory Management (cont.)

Subject Windows UNIX C Library Comments

ptg

C H A P T E R 4 : E X C E P T I O N H A N D L I N G 561

Chapter 4: Exception Handling

Table B–2 Chapter 4: Exception Handling

Subject Windows UNIX C Library

SEH Use C library signals Use C library signals

SEH Use C library signals Use C library signals

SEH Use C library signals Use C library signals

SEH Use C library signals Use C library signals

SEH Use C library signals

Signals Use block Use C library

Signals Use C library or
terminate process

Signals Use C library Use C library

Signals Use SEH, VEH N/A

Signals Use SEH, VEH N/A

Signals Use SEH, VEH N/A

Signals Use SEH, VEH N/A

Signals Use SEH, VEH N/A

Signals Use SEH, VEH N/A

Signals Use SEH, VEH N/A

Signals Use SEH, VEH N/A

Signals Use SEH, VEH N/A

Signals Use SEH, VEH N/A

Signals Use SEH, VEH N/A

Signals Use SEH, VEH N/A

Signals Use SEH, VEH, or C
library

Use C library

ptg

562 A P P E N D I X B S O U R C E C O D E P O R T A B I L I T Y : W I N D O W S , U N I X , A N D L I N U X

Chapter 5: Memory Management, Memory-Mapped
Files, and DLLs

Table B–3 Chapter 5: Memory Management, Memory-Mapped Files, and DLLs

Subject Windows UNIX C Library

Mapped Files N/A

Mapped Files N/A

Mapped Files N/A

Mapped Files N/A

Mapped Files N/A

Memory Mgt N/A N/A

Memory Mgt N/A N/A

Memory Mgt , , or C library

Memory Mgt N/A N/A

Memory Mgt N/A N/A

Memory Mgt Use C library

Memory Mgt Use C library

Memory Mgt N/A N/A

Shared Memory (map
handle)

N/A

Shared Memory N/A

Shared Memory N/A

Shared Memory N/A

DLLs N/A

DLLs N/A

DLLs N/A

DLLs N/A

ptg

C H A P T E R 6 : P R O C E S S M A N A G E M E N T 563

Chapter 6: Process Management

Table B–4 Chapter 6: Process Management

Subject Windows UNIX C Library Comments

Process
Mgt

N/A There are 6
functions

Process
Mgt

Process
Mgt

Process
Mgt

N/A

Process
Mgt

N/A

Process
Mgt

N/A

Process
Mgt

N/A

Process
Mgt

N/A

Process
Mgt

N/A

Process
Mgt

N/A

Process
Mgt

N/A N/A Windows does not
have a direct
equivalent

Process
Mgt

N/A N/A Windows does not
have a direct
equivalent

Process
Mgt

N/A N/A No parent-child
relationships in
Windows

ptg

564 A P P E N D I X B S O U R C E C O D E P O R T A B I L I T Y : W I N D O W S , U N I X , A N D L I N U X

Process
Mgt

N/A N/A No process groups in
Windows

Process
Mgt

N/A N/A

Process
Mgt

N/A N/A

Process
Mgt

N/A N/A

Process
Mgt

N/A N/A

Process
Mgt

N/A N/A

Process
Mgt

N/A N/A

Process
Mgt

N/A is not part of
the Standard C
library

Process
Mgt

N/A

Synch:
Process (process handles)

N/A

Synch:
Process (process handle)

N/A

Timers N/A

Timers N/A

Timers N/A

Timers or
,

no file
descriptor

N/A

Note: Many UNIX vendors provide proprietary exception handling capabilities.

Table B–4 Chapter 6: Process Management (cont.)

Subject Windows UNIX C Library Comments

ptg

C H A P T E R 7 : T H R E A D S A N D S C H E D U L I N G 565

Chapter 7: Threads and Scheduling

Table B–5 Chapter 7: Threads and Scheduling

Subject Windows UNIX/Pthreads Comments

Thread
Mgt

N/A

TLS

TLS

TLS

TLS

Thread
Mgt

Thread
Mgt

Thread
Mgt

Thread
Mgt

N/A

Thread
Mgt

Thread
Mgt

N/A

Thread
Mgt

N/A

Thread
Mgt is safer

Thread
Mgt

(th
read handle)

Thread
Priority

ptg

566 A P P E N D I X B S O U R C E C O D E P O R T A B I L I T Y : W I N D O W S , U N I X , A N D L I N U X

Thread
Priority

Thread
Priority

Thread
Priority

Note: Pthreads, while a part of all modern UNIX offerings, are available on
non-UNIX systems as well.

Table B–5 Chapter 7: Threads and Scheduling (cont.)

Subject Windows UNIX/Pthreads Comments

ptg

C H A P T E R S 8 – 1 0 : T H R E A D S Y N C H R O N I Z A T I O N 567

Chapters 8–10: Thread Synchronization

Table B–6 Chapters 8–10: Thread Synchronization

Subject Windows UNIX/Pthreads Comments

Synch:
CritSec

Use mutexes to emulate
critical sections. Some
systems provide
proprietary equivalents.

C library is not
applicable

Synch:
CritSec

C library is not
applicable

Synch:
CritSec

Synch:
CritSec

Synch:
Event (event handle)

Synch:
Event

Synch:
Event

Manual-reset
event

Synch:
Event

N/A

Synch:
Event

Auto-reset
event

Synch:
Event (event handle)

Synch:
Event (event handle)

Synch:
Mutex (mutex handle)

Synch:
Mutex

Synch:
Mutex

Synch:
Mutex (mutex handle)

ptg

568 A P P E N D I X B S O U R C E C O D E P O R T A B I L I T Y : W I N D O W S , U N I X , A N D L I N U X

Synch:
Sem

Synch:
Sem

N/A Windows does
not directly
support all
these options

Synch:
Sem

Synch:
Sem

Synch:
Sem (semaphore handle)

Windows can
wait for only
one count

Synch:
SRW

Synch:
SRW

Synch:
SRW

Synch:
SRW

Thread
Pools

Synch:
SOAW

Event and
mutex handles
only

Condition
Variable

Condition
Variable

User APCs

Table B–6 Chapters 8–10: Thread Synchronization (cont.)

Subject Windows UNIX/Pthreads Comments

ptg

C H A P T E R 1 1 : I N T E R P R O C E S S C O M M U N I C A T I O N 569

Chapter 11: Interprocess Communication

Table B–7 Chapter 11: Interprocess Communication

Subject Windows UNIX C Library Comments

IPC N/A N/A

IPC
(pipe handle)

Not part of the Standard
C library—see Stevens
and Rago

IPC N/A N/A

IPC N/A N/A

IPC N/A

IPC Not part of the Standard
C library—see Stevens
and Rago

IPC
or

N/A Or use file names
,

IPC N/A

IPC N/A

IPC N/A N/A

IPC N/A N/A

IPC
(named pipe handle) (FIFO)

N/A

IPC N/A N/A

ptg

570 A P P E N D I X B S O U R C E C O D E P O R T A B I L I T Y : W I N D O W S , U N I X , A N D L I N U X

IPC N/A N/A

IPC N/A N/A

IPC
(named pipe handle) (FIFO)

N/A

Misc. N/A

Misc. N/A N/A

Security Use
directory
sticky bit

N/A

Table B–7 Chapter 11: Interprocess Communication (cont.)

Subject Windows UNIX C Library Comments

ptg

C H A P T E R 1 4 : A S Y N C H R O N O U S I / O 571

Chapter 14: Asynchronous I/O

Table B–8 Chapter 14: Asynchronous I/O

Subject Windows UNIX C Library Comments

Asynch
I/O

N/A N/A

Asynch
I/O

N/A N/A Extended I/O with
completion routine

Asynch
I/O

N/A N/A Alertable wait

Asynch
I/O (file handles)

N/A

Asynch
I/O

N/A N/A Alertable wait

Asynch
I/O

N/A N/A Extended I/O with
completion routine

Asynch
I/O

N/A Alertable wait

ptg

572 A P P E N D I X B S O U R C E C O D E P O R T A B I L I T Y : W I N D O W S , U N I X , A N D L I N U X

Chapter 15: Securing Windows Objects

Table B–9 Chapter 15: Securing Windows Objects

Subject Windows UNIX Comments

Security C library does
not support
security

Security

Security N/A

Security N/A

Security

Security N/A

Security

Security

Security

Security N/A

Security

Security

Security N/A

Security

Security

ptg

C H A P T E R 1 5 : S E C U R I N G W I N D O W S O B J E C T S 573

Security C library does
not support
security

Security N/A

Security N/A

Security N/A

Security N/A

Security

Security

Security N/A

Security

Security

Security

Security N/A

Table B–9 Chapter 15: Securing Windows Objects (cont.)

Subject Windows UNIX Comments

ptg

This page intentionally left blank

ptg

575

A P P E N D I X

C Performance
Results

The example programs have shown a variety of alternative techniques to implement
the same tasks, such as file copying, random record access, and locking, and it is
natural to speculate about the performance advantages of these techniques.
Application design requires knowledge of, rather than speculation about, the
performance impacts of alternative implementations and the potential performance
advantages of various Windows versions, hardware configurations, and Windows
features, such as threads, memory mapping, and asynchronous I/O.

This appendix contains tables that compare performance directly on several
platforms. There are numerous variations for some tasks; consider, for example,
the multiple locking and condition variable combinations. The tables show that
performance can often vary significantly among different implementations, but, in
other cases, the difference is not significant. The tables also show the effect of
multiple processors. The tables here are far more comprehensive than the run
screenshots throughout the book, as those tests are usually confined to a single
machine.

You can run these tests on your own computer, and the Web site contains all
the required executables, DLLs, and shell scripts, as well as a “read me” file.

Test Configurations

Testing was performed with a representative variety of applications, based on
examples in the book and a range of host computers.

Applications

The tables in this appendix show the times measured with (Chapter 6) for
the test programs running on several different machines. The six functionality
areas are as follows.

ptg

576 A P P E N D I X C P E R F O R M A N C E R E S U L T S

1. File copying. Several different techniques, such as using the C library and the
Windows function, are measured to determine the performance im-
pact. File copying stresses sequential file I/O without any data processing.

2. Simple Caesar cipher file conversion. This shows the effect of memory map-
ping, larger buffers, the Windows sequential scan flags, and asynchronous
I/O. Conversion stresses file I/O with a small amount of data processing as the
data is moved, and converted, from one buffer to another.

3. Word counting. This test set uses the program in its single and multithreaded
forms. Simple sequential processing is also tested and turns out to be competitive
with the two parallel search methods on a single processor. Word counting in-
creases the amount of data processing and minimizes the output.

4. Record Access. This shows the performance differences between direct file I/O
(read and write statements) and memory mapping to perform record access in
large files.

5. Locking. Chapter 9 discussed several locking models and showed some results,
and the table here extends those results.

6. Multithreaded producer/consumer application. This shows the effects of dif-
ferent synchronization techniques for implementing a multithreaded queuing
application in order to evaluate the trade-offs discussed in Chapters 8, 9, and
10 among s, condition variables, mutexes, and the signal
and broadcast condition variable models.

All application programs were built with Microsoft Visual Studio 2005 and 2008
as release versions rather than debug versions. Running in debug mode can add
significant performance overhead. Nearly 80% overhead was observed in one CPU-
intensive test, and the debug executable images can be two or three times larger
than the release versions.

The VS 2005 builds are all 32-bit, but there are 32- and 64-bit versions of the VS
2008 builds. In most cases, the results are similar when run on a 64-bit computer,
but the 64-bit builds allow much larger files and data structures.

Test Machines

Performance was measured on six computers with a wide variety of CPU, memory,
and OS configurations. I’ve used a broad range of current and relatively inexpensive
machines; nonetheless, anyone reading this list in a few years may be tempted to
smile indulgently as technical progress obsolesces these computers.

ptg

P E R F O R M A N C E M E A S U R E M E N T S 577

1. A 1.4GHz Intel Celeron M 1-processor laptop with 1.5GB RAM, running Win-
dows XP SP3 (32-bit). This computer is about 5 years old (as of October 2009),
but it is still useful; I’m using it to create this document and expect to use it
for years to come.

2. A 2GHz Intel Core2 (2-CPU) laptop acquired in June 2008 with 2GB RAM,
running Windows Vista SP2 (32-bit).

3. A new (May 2009) 2.83GHz Intel Core2 Quad (4-CPU) desktop with 4MB
RAM, running Windows Vista SP2 (32-bit).

4. A new (June 2009) 2.4GHz AMD Phenom 9750 Quad-Core (4-CPU) desktop1

with 16GB RAM, running Windows Vista SP2 (64-bit). All applications are 64-
bit builds. The 64-bit executables are sometimes slower and rarely faster than
the 32-bit executables, but they do have the advantage of being able to process
large data sets and to map huge files. For a comparison, see test machine 6.

5. A 1.7GHz AMD Quad-Core AMD Opteron Processor 2344 HE server with two cores
(8 processors total) and 4GB RAM, running Windows Server 2008 SP1 (32-bit).

6. Windows 7 installed on machine 4 to validate operation on Windows 7 and to
see if there are any notable performance differences from Vista. All applica-
tions are 32-bit builds, whereas the machine 4 builds are 64-bit.

All file systems were less than 50% full and were not significantly fragmented.
In addition, the test machines were all idle except for running the test programs.
The CPU-intensive applications give a good indication of relative processing
speeds.

The timing programs are all in the Examples file so that you can perform
these tests on your own test machine.

Performance Measurements

Each application was run five times on the host machine. The batch files clear
physical memory before each run of the file access programs so that performance
figures would not be improved as the files became cached in memory or the swap
file. The tables show the average times in seconds.

Comments are after the tables. Needless to say, generalizations about perfor-
mance can be perilous because numerous factors, including test program charac-
teristics, contribute to a program’s performance. These tests do, however, show

1 Actually, it’s on the floor, but we’ll use the marketing term, and anyhow, the laptops are on the
desktop.

ptg

578 A P P E N D I X C P E R F O R M A N C E R E S U L T S

some of the possibilities and show the potential impacts of various operating sys-
tem versions and different programming techniques. Also bear in mind that the
tests measure the time from program start to end but do not measure the time
that the computer might take to flush buffers to the disk. Finally, there was no at-
tempt to exploit specific computer features or parameters, such as stripped disks,
disk block sizes, multiple disk partitions, and so on.

The Windows performance monitor, available under the control panel’s
Administrative Tools, displays CPU, kernel, user, and other activities graphically.
This tool is invaluable in gaining insight into program behavior beyond the
measurements given here.

The host machine variety also shows the impact of features such as cache size
and organization, disk speed, and more. For example, machine 4 (Vista, 4-CPU,
64-bit, 2.4GHz desktop) sometimes outperforms machine 2 (Vista, 2-CPU, 32-bit,
2.0GHz laptop) by factors far beyond what can be explained by CPU count and
clock speed alone; see the locking results (Table C–5). In some other cases, the
results are nearly the same, as with file copying (Table C–1), which is purely
serial. The impact of these features can be difficult, if not impossible, to predict
accurately. Ultimately, you need to test your application.

One more example will reinforce this point. I recently experimented with a
parallelism framework (see Chapter 9) on the 2-CPU Vista laptop (machine 2) and
for many programs found consistent performance improvement factors such as 1.5
to 1.9 compared to the serial, single-threaded program. Running on more
processors, such as machine 4, gave even better results. However, one test
program run on the laptop, a matrix transpose, was consistently slower than the
serial version run on the same machine, although the results on other machines
were good. The explanation, while not certain, seemed to involve the laptop’s
cache architecture.

Finally, here is even more advice. First, do not put too much weight on small
performance differences, especially when the total times are small (less than a
second, for example). In many cases, such as file copying, results can vary widely
from one run to the next. Also, beware of the temptation to gain performance at
the cost of correctness; multithreaded applications, for instance, can be
challenging to get right.

File Copying

Five file copy implementations copy a 320MB file (5,000,000 64-byte records,
generated with Chapter 5’s program).

1. (Program 1–1) uses the C library. This test measures the effect of an
implementation layered on top of Windows, although the library has the
opportunity to perform efficient buffering and other techniques.

ptg

P E R F O R M A N C E M E A S U R E M E N T S 579

2. (Program 1–2) is the straightforward Windows implementation with a
small buffer (256 bytes).

3. is a “fast” implementation, using a larger buffer (8,192 bytes, a multi-
ple of the sector size on all host machines) and the sequential scan flags on
both the input and output files.

4. (Program 1–3) uses the Windows function to determine
whether the implementation within a single system call is more efficient than
what can be achieved with other techniques.

5. is a UNIX implementation using a small buffer (similar to). It is
modified slightly to use the Visual C++ UNIX compatibility library.

While the results are averages of five test runs, the elapsed time can vary
widely. For example, (first row), with an average of 2.48 seconds in the second
column (2-CPU Vista laptop), had a minimum elapsed time of less than a second
and a maximum of more than 10 seconds. This wide variation was typical of
nearly all cases on all the machines.

Comments

1. The C library gives competitive performance that is superior to the simplest
Windows implementation in many cases, but the UNIX compatibility library
is slower.

2. Multiple processors do not make a difference, as the implementations do not
exploit parallelism.

3. There is no significant difference between the 32-bit and 64-bit build
performance (machines 3, 4, and 6).

4. There are elapsed time performance advantages on Vista and Windows 7 ma-
chines obtained by using large buffers, sequential scan flags, or a function
such as .

5. Vista is significantly faster than XP, although the XP laptop may suffer from
older disk technology.

6. The Windows 7 times look good compared to Vista on the same hardware plat-
form (machines 4 and 6).

7. Elapsed time results are highly variable, with as much as a 10:1 difference
between identical tests run under identical circumstances.

ptg

580 A P P E N D I X C P E R F O R M A N C E R E S U L T S

Table C–1 File Copy Performance

CPU
1.4GHz
1-CPU

2.0GHz
2-CPU

2.83GHz
4-CPU

2.4GHz
4-CPU

1.7GHz
8-CPU

2.4GHz
4-CPU

OS XP Vista Vista Vista
Server
2008

Windows
7

Build
CPU

32-bit
32-bit

32-bit
32-bit

32-bit
32-bit

64-bit
64-bit

32-bit
32-bit

32-bit
64-bit

Real 36.10 2.48 3.33 2.66 2.50 1.87

User 0.98 0.90 0.55 0.51 0.92 0.56

System 3.31 1.53 1.37 1.75 1.47 0.92

Real 33.48 8.58 9.47 9.85 9.83 6.71

User 0.45 0.53 1.59 0.11 0.58 0.41

System 10.88 8.24 7.86 8.80 8.56 6.15

Real 40.23 0.92 0.89 1.13 1.22 0.87

User 0.03 0.03 0.09 0.00 0.03 0.12

System 2.03 1.03 0.80 1.23 1.17 0.83

Real 18.08 0.70 0.79 0.79 1.95 1.19

User 0.03 0.02 0.02 0.00 0.00 0.00

System 0.77 0.64 0.62 0.67 1.31 0.58

Real 37.61 6.65 4.12 4.34 6.05 3.67

User 3.63 3.17 1.93 2.32 2.98 1.98

System 3.92 3.28 2.01 1.68 3.00 1.65

ptg

P E R F O R M A N C E M E A S U R E M E N T S 581

Caesar Cipher File Conversion

Seven programs tested converting the same 320MB file. Table C–2 shows the re-
sults.

1. is Program 2–3 and is comparable to using a small buffer.

2. uses both a large buffer and sequential scan flags, and it also presizes
the output file to the length required.

3. , Run 14–1, uses overlapped I/O.

4. , Program 14–2, uses extended I/O.

5. uses memory mapping for file I/O and calls the functions in Program 5–3.

6. is a multithreaded implementation of Chapter 14’s multiple buffer
scheme without asynchronous I/O.

7. is a modification of and uses memory-mapped files rather
than and .

Comments

1. These results show no consistent benefit to using large buffers and the se-
quential scan flags, possibly in conjunction.

2. The very large and times for test machine 1 (Windows XP) are
not misprints; these times are repeatable and are only partially explained by
clock rate, disk speed, or similar factors.

3. Extended and overlapped I/O performance are excellent on Windows Vista and
Windows 7. Notice that the time is predominantly user time and not system time.

4. Multiple threads do not provide any significant benefit unless the threads are
combined with memory-mapped files.

5. Memory-mapped I/O can give good performance, except that test machine 2
(Windows XP, 2 processors) showed poor performance consistently. I don’t
have a good explanation for this behavior.

ptg

582 A P P E N D I X C P E R F O R M A N C E R E S U L T S

Table C–2 File Conversion Performance

CPU
1.4GHz
1-CPU

2.0GHz
2-CPU

2.83GHz
4-CPU

2.4GHz
4-CPU

2.4GHz
4-CPU

OS XP Vista Vista Vista
Windows

7

Build
CPU

32-bit
32-bit

32-bit
32-bit

32-bit
32-bit

64-bit
64-bit

32-bit
64-bit

Real 53.80 15.21 18.62 17.83 13.45

User 4.27 2.03 7.00 6.24 5.41

System 11.64 11.70 12.34 11.40 7.94

Real 40.14 13.74 16.67 18.91 13.77

User 3.13 1.31 5.93 7.16 4.85

System 1.97 1.25 1.06 1.53 1.31

Real 371.2 5.27 7.55 9.37 6.47

User 3.16 1.62 6.10 8.11 5.37

System 2.11 1.26 1.42 1.08 1.06

Real 62.56 3.21 7.96 10.57 6.29

User 8.36 1.68 6.58 9.19 5.21

System 6.02 0.95 0.89 1.28 0.99

Real 4.08 37.59 5.82 6.67 5.13

User 3.16 1.83 5.40 6.61 4.65

System 0.66 1.86 0.41 0.42 0.48

Real 485.6 8.11 5.81 6.20 4.80

User 2.72 1.47 1.42 5.77 5.09

System 2.69 2.22 2.48 1.83 1.47

Real 23.66 2.70 2.44 2.50 2.29

User 3.11 1.62 5.07 5.20 4.88

System 0.33 0.21 0.17 0.11 0.16

ptg

P E R F O R M A N C E M E A S U R E M E N T S 583

Word Counting

Four word counting methods compared the efficiencies of multiple threads and se-
quential processing (see Table C–3).

1. , the Cygwin implementation (a free download from www.cygwin.com), is
single threaded but well-implemented.

2. , a variation of Program 7–1, uses a thread for each file and direct
(read/write) file I/O.

3. replaces ’s direct I/O with file memory mapping.

4. is the Vista thread pool variation of .

The eight target files used in the test are each 64MB. Using files with signifi-
cantly different lengths would reduce the parallelism and multithreaded speedup,
as some threads would complete sooner than others. However, should
adjust to this situation and give better results (this would be a good experiment).

Comments

1. is slow not because of the threads but because of the direct file reading.
A single-threaded version showed similar bad results.

2. The Cygwin implementation is competitive on a single processor.

3. Memory-mapped files provide a clear advantage, and the threading is also
effective.

4. Multiprocessor machines show the performance gains that are possible using
threads. Notice that the total user and system times exceed the real time be-
cause the user and system times represent all processors. We’ll also see this in
other tests.

www.cygwin.com

ptg

584 A P P E N D I X C P E R F O R M A N C E R E S U L T S

Table C–3 Word Counting Performance

CPU
1.4GHz
1-CPU

2.0GHz
2-CPU

2.83GHz
4-CPU

2.4GHz
4-CPU

1.7GHz
8-CPU

2.4GHz
4-CPU

OS XP Vista Vista Vista
Server
2008

Windows
7

Build
CPU

32-bit
32-bit

32-bit
32-bit

32-bit
32-bit

64-bit
64-bit

32-bit
32-bit

32-bit
64-bit

Real 6.84 22.12 2.45 3.59 7.08 3.57

User 4.69 3.15 1.81 2.56 5.52 2.31

System 0.91 1.33 0.64 1.14 1.52 1.23

Real 97.78 40.05 41.78 20.71 68.33 28.11

User 97.12 73.06 153.8 77.89 424.3 96.55

System 0.64 0.09 0.62 0.70 1.09 0.84

Real 4.67 1.58 0.56 1.44 0.52 1.45

User 4.25 2.45 1.83 5.01 3.19 5.09

System 0.38 0.09 0.09 0.12 0.17 0.11

Real N/A 3.88 0.58 1.76 0.52 1.84

User N/A 7.02 1.64 5.93 3,19 6.10

System N/A 0.16 0.20 0.08 0.19 0.14

ptg

P E R F O R M A N C E M E A S U R E M E N T S 585

Random File Record Access

This test set compares (Chapter 3) and
(Chapter 5). These programs read and write fixed-length records in large, initially
empty files. The programs both interact with the user who specifies read, write, de-
lete, or other operations and specifies a record number and data (for write opera-
tions). There is no hashing; this record number is an index into the file, as if it were
an array.

An additional program, , creates text
command files to drive the tests. The test set then:

1. Creates empty files with space for 100,000 fixed-length records. The record
length is, arbitrarily, 308 bytes.

2. Generates a command file to write 50,000 data records into random locations in
the file.

3. Generates a command file to read 100,000 records from the file. Some will not
be located, as there are only 50,000 nonempty records.

4. The command files are used as redirected input to both and
.

Comments

1. Memory-mapped file I/O is always fastest. However, be aware that these tests
use small records; you can get different results if your records are larger than
the page size.

2. Vista’s random access is much better than XP’s. Windows 7 shows poor ran-
dom access write performance. This result is repeatable, and there is no ap-
parent explanation.

3. The two programs are single threaded, so multiple processors do not provide
an advantage.

ptg

586 A P P E N D I X C P E R F O R M A N C E R E S U L T S

Table C–4 Random File Record Access

CPU
1.4GHz
1-CPU

2.0GHz
2-CPU

2.83GHz
4-CPU

2.4GHz
4-CPU

1.7GHz
8-CPU

2.4GHz
4-CPU

OS XP Vista Vista Vista
Server
2008 Windows 7

Build
CPU

32-bit
32-bit

32-bit
32-bit

32-bit
32-bit

64-bit
64-bit

32-bit
32-bit

32-bit
64-bit

Real 163.84 18.12 10.88 6.32 8.36 17.64

User 0.23 0.31 0.28 0.45 0.41 0.44

System 1.13 1.22 0.72 1.19 0.86 0.95

Real 11.89 0.87 0.61 0.84 0.84 0.42

User 0.19 0.14 0.11 0.16 0.16 0.17

System 0.45 0.73 0.50 0.64 0.63 0.25

Real 0.63 0.29 0.24 0.50 0.67 0.33

User 0.41 0.22 0.17 0.41 0.58 0.27

System 0.62 0.08 0.08 0.06 0.09 0.06

Real 0.22 0.13 0.14 0.14 0.27 0.11

User 0.22 0.12 0.11 0.14 0.23 0.08

System 0.02 0.0 0.03 0.03 0.03 0.03

ptg

P E R F O R M A N C E M E A S U R E M E N T S 587

Locking

The locking tests ran seven of the Chapter 9 variations to compare the effi-
ciencies of locking by multiple worker threads (see Table C–5). Chapter 9 lists some
partial results. The seven programs, listed in order of expected performance from
best to worst, are:

1. has no locking synchronization, which is valid in this simple
program, as there are no shared variables. The NS results show the actual
time that the worker tasks require; the remaining tests show the locking
overhead.

2. uses interlocked increment and decrement operations so that lock-
ing occurs at the lowest level with atomic processor instructions.

3. uses a slim reader/writer (SRW) lock and a Vista thread pool.

4. uses an SRW lock but conventional thread management.

5. uses a , but there is no spin lock adjustment.
Spin lock experimentation would be interesting but is not included.

6. uses a Windows mutex and a semaphore throttle set to the num-
ber of processors, or to the number of threads on a single-processor machine.
The performance improvement, if any, is marginal with 64 threads but is bet-
ter with 128 threads (see Table 9–1).

7. uses a Windows mutex.

In each case, there were 64 worker threads, with each thread performing
256,000 work units. The results are similar when using more threads or fewer
threads, although the differences are harder to distinguish for 16 or fewer
threads. The mutex cases (,) show the negative impact of
more processors contending for the mutex (compare the 4- and 8-processor cases).

See Chapter 9 for more information about these programs and their relative
speeds.

ptg

588 A P P E N D I X C P E R F O R M A N C E R E S U L T S

Table C–5 Locking Performance

CPU
1.4GHz
1-CPU

2.0GHz
2-CPU

2.83GHz
4-CPU

2.4GHz
4-CPU

1.7GHz
8-CPU

2.4GHz
4-CPU

OS XP Vista Vista Vista
Server
2008

Windows
7

Build
CPU

32-bit
32-bit

32-bit
32-bit

32-bit
32-bit

64-bit
64-bit

32-bit
32-bit

32-bit
64-bit

Real 0.13 4.42 0.08 1.82 0.11 2.28

User 0.13 8.64 0.14 7.19 0.75 8.95

System 0.02 0.03 0.03 0.02 0.00 0.02

Real 0.50 4.46 0.53 1.80 0.48 2.28

User 0.48 8.83 1.89 7.11 0.47 9.02

System 0.00 0.02 0.00 0.00 0.00 0.00

Real N/A 5.41 0.64 2.30 0.77 2.75

User N/A 10.36 2.26 9.00 5.78 10.89

System N/A 0.02 0.02 0.03 0.00 0.00

Real N/A 5.24 0.63 2.32 0.84 2.79

User N/A 10.16 2.31 9.11 6.21 11.00

System N/A 0.05 0.02 0.02 0.00 0.00

Real 1.17 5.30 1.28 5.02 2.02 4.73

User 1.17 10.08 0.98 11.14 3.72 13.18

System 0.00 0.14 1.23 3.57 0.20 3.53

Real 59.69 157.9 132.0 110.0 242.5 90.68

User 17.75 36.26 35.32 37.32 355.8 40.28

System 41.16 49.44 209.3 194.3 157.9 72.40

Real 31.52 167.6 178.8 115.2 226.2 94.07

User 9.13 24.66 16.49 26.30 157.7 42.09

System 21.00 64.16 132.9 84.74 61.67 72.34

ptg

P E R F O R M A N C E M E A S U R E M E N T S 589

Message Passing and Contending for a Single Resource

This test sequence compares different strategies for implementing the queue
management functions of Program 10–4, using Program 10–5 (the three-stage
pipeline) as a test application. The tests were run on machine 4 (4-CPU, Vista, 32-
bit builds) using 1, 2, 4, 8, 16, 32, and 64 threads along with 4,000 work units per
thread. Ideally, we would then expect real time to increase linearly with the number
of threads, but contention for a single mutex (or (CS)) can
cause nonlinear degradation as the number of threads increases. Note that these
tests do not exercise the file system.

There are six different implementation strategies, and the results are shown in
separate columns in Table C–6. The comments following Program 10–4 discuss the
results and explain the merits of the different implementations, but notice that the
signal model does scale with the number of threads, while the broadcast model does
not scale, especially with 32 and 64 threads. Also notice how the broadcast model
results in large amounts of system CPU time as multiple threads run, test the
predicate, and immediately return to the wait state.

Also notice how CSs compare well with condition variables (the last two columns)
in the signal model, even though the CS implementation requires a time-out.

1. . Broadcast model, mutex, event, separate release and wait calls.
There is no time-out.

2. CS. Broadcast model, , event, separate release
and wait calls. The tunable time-out was set to 25 milliseconds, which optimized
the 16-thread case.

3. . Broadcast model, mutex, event, with 25-ms time-out.

4. . Signal model, mutex, event, separate release and wait calls.

5. . Signal model, , event, separate re-
lease and wait calls.

6. . Vista condition variable using
(the signal model).

ptg

590 A P P E N D I X C P E R F O R M A N C E R E S U L T S

Table C–6 Multithreaded Pipeline Performance on a Four-Processor Desktop

Number
of

Threads

Broadcast
Model

Broadcast
Model

Broadcast
Model Signal Model Signal Model Signal Model

Mtx, Evt CS, Evt Mtx, Evt SOAW CS, Evt Vista CV

no T/O 25-ms T/O 25-ms T/O no T/O 25 ms T/O WakeCV

Real 0.12 0.03 0.10 0.07 0.10 0.05

1 User 0.16 0.06 0.06 0.05 0.14 0.09

System 0.05 0.02 0.11 0.08 0.08 0.02

Real 0.17 0.14 0.16 0.17 0.09 0.07

2 User 0.17 0.14 0.14 0.09 0.14 0.14

System 0.17 0.16 0.23 0.14 0.11 0.05

Real 0.47 0.27 0.48 0.40 0.15 0.14

4 User 0.37 0.31 0.34 0.28 0.16 0.30

System 0.80 0.19 0.67 0.50 0.30 0.08

Real 1.60 0.50 1.43 0.79 0.34 0.32

8 User 0.98 0.64 0.84 0.67 0.48 0.52

System 2.15 0.47 1.87 0.89 0.51 0.17

Real 5.71 1.44 5.06 1.56 0.71 0.72

16 User 2.37 1.44 2.29 1.20 1.17 1.36

System 6.49 1.99 6.29 1.58 0.94 0.30

Real 21.21 4.33 20.42 3.14 1.42 1.54

32 User 6.26 3.03 6.30 2.78 2.18 2.96

System 23.50 7.27 25.12 3.78 2.04 0.67

Real 82.99 16.21 76.51 6.37 2.82 2.47

64 User 21.00 7.86 20.09 5.60 4.04 6.27

System 89.06 28.22 95.08 7.99 4.17 2.50

ptg

R U N N I N G T H E T E S T S 591

Running the Tests

The directory on the book’s Web site includes the following batch files:

•

• — The word count tests are also in this file

•

•

•

The program creates a large ASCII file used in the first two batch files.

ptg

This page intentionally left blank

ptg

593

Bibliography

Beveridge, Jim, and Wiener, Robert. Multithreading Applications in Win32: The
Complete Guide to Threads, Addison-Wesley, Reading, MA, 1997. ISBN-13:
9780201442342.

Bott, Ed, and Siechert, Carl. Microsoft® Windows® XP Networking and Security
Inside Out, Microsoft Press, Redmond, WA, 2005. ISBN-13: 9780735620421.

Box, Don. Essential COM, Addison-Wesley, Reading, MA, 1998. ISBN-13:
9780201634464.

Butenhof, David. Programming with POSIX® Threads, Addison-Wesley, Reading,
MA, 1997. ISBN-13: 9780201633924.

Chen, Raymond. The Old New Thing: Practical Development Throughout the Evo-
lution of Windows, Addison-Wesley, Boston, MA, 2007 . ISBN-13:
9780321440303.

CCRA. Common Criteria. This defines the security assurance levels. www.com-
moncriteriaportal.org/thecc.html.

Cormen, Thomas H, Leiserson, Charles E., Rivest, Ronald L, and Stein, Clifford.
Introduction to Algorithms, Third Edition, MIT Press, Cambridge, MA, 2009.
ISBN-13: 9780262033848.

Custer, Helen. Inside Windows NT®, Microsoft Press, Redmond, WA, 1993. ISBN-
13: 9781556154812.

———. Inside the Windows NT File System, Microsoft Press, Redmond, WA, 1994.
ISBN-13: 9781556156601.

Donahoo, Michael, and Calvert, Kenneth. TCP/IP Sockets in C: Practical Guide for Pro-
grammers, Morgan Kaufmann, San Francisco, CA, 2001. ISBN-13:
9781558608269.

Dr. International. Developing International Software, Second Edition, Microsoft Press,
2002. ISBN-13: 9780735615830.

Duffy, Joe. Concurrent Programming on Windows, Addison-Wesley, Boston, MA,
2009. ISBN-13: 9780321434821.

Hennessy, John L., and Patterson, David A. Computer Architecture: A Quantitative
Approach, Third Edition, Morgan Kaufmann, San Francisco, CA, 2002. ISBN-
13: 9781558605961.

Honeycutt, Jerry. Microsoft® Windows® Registry Guide, Second Edition, Microsoft
Press, Redmond, WA, 2005. ISBN-13: 9780735622180.

Josuttis, Nicolai M. The C++ Standard Library: A Tutorial and Reference, Addison-
Wesley, Boston, MA, 1999. ISBN-13: 9780201379266.

www.commoncriteriaportal.org/thecc.html
www.commoncriteriaportal.org/thecc.html

ptg

594 B I B L I O G R A P H Y

Kano, Nadine. Developing International Software for Windows® 95 and Windows
NT™, Microsoft Press, Redmond, WA, 1995. ISBN-13: 9781556158407.

Kernighan, Brian W., and Ritchie, Dennis M. C Programming Language: ANSI C
Version, Second Edition, Prentice-Hall, Englewood Cliffs, NJ, 1988. ISBN-13:
9780131103627.

Komar, Brian. Microsoft Windows Server™ 2003 PKI and Certificate Security, Mi-
crosoft Press, Redmond, WA, 2004. ISBN-13: 9780735620216.

Miller, Kevin. Professional NT Services, Wrox Press, Indianapolis, IN, 1998.
ISBN-13: 9781861001306.

Nagar, Rajeev. Windows NT® File System Internals, OSR Press, Amherst, NH,
2006. ISBN-13: 9780976717515.

Naik, Dilip. Inside Windows Storage: Server Storage Technologies for Windows
2000, Windows Server 2003, and Beyond, Addison-Wesley, Boston, MA, 2004.
ISBN-13: 9780321126986.

Nottingham, Jason P., Makofsky, Steven, and Tucker, Andrew. SAMS Teach
Yourself Windows® CE Programming in 24 Hours, Que Corporation, Berkeley,
CA, 1999. ISBN-13: 9780672316586.

Ohlund, Jim. Network Programming for Microsoft® Windows®, Second Edition,
Microsoft Press, Redmond, WA, 2002. ISBN-13: 9780735615793.

Oney, Walter. Programming the Microsoft® Windows® Driver Model, Second Edi-
tion, Microsoft Press, Redmond, WA, 2003. ISBN-13: 9780735618039.

Petzold, Charles. Programming Windows®, Fifth Edition, Microsoft Press,
Redmond, WA, 1998. ISBN-13: 9781572319950.

Plauger, P. J. The Standard C Library, Prentice Hall, Englewood Cliffs, NJ, 1991.
ISBN-13: 9780131315099.

Raymond, Eric S. The Art of UNIX Programming, Addison-Wesley, Boston, MA,
2004. ISBN-13: 9780131429017.

Rector, Brent, and Newcomer, Joseph M. Win32 Programming, Addison-Wesley,
Reading, MA, 1997. ISBN-13: 9780201634921.

Richter, Jeffrey and Nasarre, Christophe. Windows® via C/C++, Fifth Edition,
Microsoft Press, Redmond, WA, 2007. ISBN-13: 9780735624245.

Richter, Jeffrey, and Clark, Jason. Programming Server-Side Applications for
Microsoft® Windows® 2000, Microsoft Press, Redmond, WA, 2000. ISBN-13:
9780735607538.

Robbins, Arnold. UNIX in a Nutshell, Fourth Edition, O’Reilly Media, Inc., Cam-
bridge, MA, 2008. ISBN-13: 9780596100292.

Russinovich, Mark, Solomon, David, and Ionescu, Alex. Windows® Internals: In-
cluding Windows Server® 2008 and Windows Vista®, Fifth Edition, Microsoft
Press, Redmond, WA, 2009. ISBN-13: 9780735625303.

ptg

B I B L I O G R A P H Y 595

Schmidt, Douglas, and Pyarali, Irfan. Strategies for Implementing POSIX Condi-
tion Variables in Win32, www.cs.wustl.edu/~schmidt/win32-cv-1.html.

Sinha, Alok K. Network Programming in Windows NT™, Addison-Wesley,
Reading, MA, 1996. ISBN-13: 9780201590562.

Smith, Ben, Komar, Brian, and the Microsoft Security Team. Microsoft®

Windows® Security Resource Kit, Second Edition, Microsoft Press, Redmond,
WA, 2005. ISBN-13: 9780735621749.

Stevens, W. Richard, and Rago, Stephen A. Advanced Programming in the UNIX®

Environment, Second Edition, Addison-Wesley, Boston, MA, 2008. ISBN-13:
9780321525949.

Stevens, W. Richard. TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP,
NNTP, and the UNIX® Domain Protocols, Addison-Wesley, Reading, MA,
1996. ISBN-13: 9780201634952.

———. UNIX Network Programming—Networking APIs: Sockets and XTI, Vol-
um e I , P r ent ic e Ha l l , Upper Sa dd le Ri ver, N J, 199 8 . ISBN -13 :
9780134900124.

Tanenbaum, Andrew S. Modern Operating Systems, Third Edition, Prentice Hall,
Upper Saddle River, NJ, 2008. ISBN-13: 9780136006633.

Unicode Consortium, The. The Unicode Standard, Version 2.0, Addison-Wesley,
Reading, MA, 1997. ISBN-13: 9780201483451.

Williams, Robert, and Walla, Mark. The Ultimate Windows Server 2003 System
Administrator’s Guide, Addison-Wesley, Boston, MA, 2003. ISBN-13:
9780201791068.

www.cs.wustl.edu/~schmidt/win32-cv-1.html

ptg

This page intentionally left blank

ptg

597

A
Abandoned mutexes 281

 function 114–115

flag 247
 function 417

Access
rights 521
tokens 520, 543

Access control entries (ACEs) 521, 525–
527, 535–537, 542

Access control lists (ACLs) 521, 525–527,
535–537, 542, 543

Access control lists, discretionary
(DACLs) 520

 flag 537
 flag 537

ACE see Access control entries
ACL see Access control lists

 word 526
 value 536

 flag 536

function 311
 function 310

 function 526
 function 526

 function 543
Address space 132

function 128
414

Alertable
I/O 492
wait functions 494–495

function 524, 543
 function 53

Anonymous pipes 380
APC see Asynchronous Procedure Calls
Application portability 372, 549

Asynchronous I/O 482
with threads 500–501

Asynchronous Procedure Calls
(APCs) 366–371

Asynchronous thread cancellation 371
Attributes

directory 72–74
file 70–74

B
 keyword 162

Based pointers 161, 162
 Microsoft C

function 231–232
247

Berkeley Sockets 411, 412, 447
Binary search tree 143–144

 function 415
Boss/worker model 236–237
Broadcast mechanisms 401

C
C library 10–11

in threads 231–232
cache 263–265
Callback function 319–324

 function 390
 C library function 143

486
 function 502

file concatenation program 41, 197
program run 43
UNIX command 41

Caesar Cipher program run 45
file encryption program 44
performance 581

 program 45
 program 157

program 173
program run 174

Index

ptg

598 I N D E X

performance 581
program 497
program run 499

performance 581

performance 581
program run 159

performance 581

performance 581

performance 581
program 488
program run 491

CDFS see CD_ROM File System
CD-ROM File System (CDFS) 26

 program 539
 parameter 469

 type 34
Character types 34–36

program 528
UNIX command 528

 program run 531
 function 109

Client connections to named pipes 387
Client/server

command line processor 393–400
model 236, 384
named pipe connection 389

program 393
program run 401

393

program 424
program run 425

 UNIX function 74
 function 18, 31, 71, 151

 function 469
 function 418

 function 344
Closing files 31–32
COM 167

 program 435
 function 73

 function 543

Completion routines 492–495
Condition variable (CV) model 337–342
Condition variable predicates 337
condition variables 362

 pathname 40
 function 419

function 388, 483
 pathname 40

Console
control events 204–205
control handlers 124–126, 185
I/O 40–53

 function 53
 function 108

 function 470
 function 19, 47, 48

Copying files 46–48
 function 543

Co-routines 254
 UNIX command 13

C library program 13
performance 578

performance 579
program run 20
Windows program 19

 performance 579

performance 579
Windows file copying program 17

 performance 579
 flag 30

 flag 30
 flag 185

 flag 185,
204

 flag 185, 228
 function 49

 function 287, 485
 function 28–31, 71, 483

 function 150–151
 function 47, 71

 function 165
 function 506,

507
 function 404

 function 279–280
 function 385, 483

ptg

I N D E X 599

 function 380

function 541
 function 184–186, 204,

247
 function 228

 function 284
 function 226–228

 function 344
 function 501

Creating
directories 49
files 28–31

 (CS) 302, 336, 343
guidelines 294–295
locking and unlocking 307
objects 269, 281–284
Spin Counts 308–309

CS see
 flags 126, 204

program 126
program run 128

CV see Condition variable

D
DACL see Discretionary access control list

 value 536
 flag 527

Datagrams 445–447
Deadlocks 281–284

 C++ storage modifier 169
 function 542

 function 46
 function 469

Deleting
directories 49
files 46–48

 flag 185, 204
 function 65

Directories
attributes 72–74
creating 49
deleting 49
managing and setting 50–51
moving 46–49
naming 27–28
setting 187

 function 388
DLL see Dynamic link libraries

 storage modifier 169
 storage modifier 169

 function 175
Drive names 27

 flag 192
 flag 192

 function 191
Duplicating handles 191

 prefix 9, 29
 type 29

Dynamic
data structures 131
link libraries (DLLs) 149, 167–175
memory management 131–134

E
 floating point masks 109

 flags 52
 Microsoft C function 231

 function 270
 block 185, 195–196

Environment strings 195–196
 return value 493

 return value 486
 return

value 388
 flag 89

Errors 110–112
 UNIX directory 87

Event handle 485, 496

program 290
program run 292

Events 287–289, 336
38

102
Exception handlers 101–111

 program 121
 exception codes 106, 110,

111, 113
 return values 104, 129

111
107, 129

 structure 107
 UNIX functions 187

 UNIX function 187
Executable image 187

 function 192, 228, 230
 function 228

Explicit linking 170–172

ptg

600 I N D E X

Exporting and importing interfaces 169–
170

Extended I/O 492–495

F
FAT see File Allocation Table

 C library function 32
 UNIX function 85

 C library function 16
Fibers 253–255
FIFO UNIX named pipe 392
File Allocation Table (FAT) file system 26

 C library objects 32
File handle 33, 61, 82, 150
File mapping objects 150–154
File permissions

changing 538
reading 537

 flags 30–??, 71, 73
 position flag 61

 position flag 61
 position flag 61

 flags 30, ??–31, 63, 386
 flag 483, 485,

492
 flag 152

 flag 152
 flag 152

 flag 29, 404
 flag 29

Files
attributes 70–74
closing 31–32
copying 46–48
creating 28–31
deleting 46–48
handles 31
locking 81–86
memory-mapped 131
moving 46–49
naming 27–28, 74
opening 28–31
paging 135
pointers 60–62
reading 32–33
resizing 64
searching for 70–71
systems 25–26
writing 33

72, 202, 456, 460

 function 73
 function 72

 program 147

exception filtering program run 124
function program 123

Filter expressions 103–104
113

 structure 70
 function 64, 70–71

 function 71
Floating-point exceptions 108–110

 function 153
 C library function 32

 UNIX function 186
 function 38

 C library function 34
 C library function 143

 function 53
 function 172

 C library function 32
 flag 65

 C library function 34

G

function 124, 205
Generic characters 34–36

29
for named pipes 540

29
for named pipes 540

 function 537
 function 536

 function 202
 function 64

 function 50
 function 190

 function 190
 function 229

 function 229
 function 63

 function 196
 function 105–106

function 106
 function 192–193

 function 229
 function 73

ptg

I N D E X 601

function 71
 function 535

 function 64
 function 64

 function 72
 function 73

 function 72

function 541
 function 19, 38

 function 404
 function 172, 191

 function 191
 function 172

function 387
 function 388

 function 486
 function 247

function 541
 function 172

 function 318,
330

 function 134, 142
 function 229

function 250
 function 202

function 507

function 523

function 536

function 525, 536

function 525, 536

function 543
 function 72

 function 185
 function 40

 function 187
 function 134

 function 74
 function 74

 function 229
 function 248

 function 202
 function 543

 function 524
 function 187

Global storage 266
Granularity, locking 295

 UNIX command 197

performance 583
program run 200
search program 198

performance 583
program run 235
search program 233

 performance 583

value 536
Growable and nongrowable heaps 137
Guarded code blocks 102–104

H
HAL see Hardware Abstraction Layer

 variable type 18
Handlers

exception 101–111
termination 113–117

Handles 7, 39
duplicating 191
inheritable 188–189
pseudo 190

hard link 47
Hardware Abstraction Layer (HAL) 5
Heap handle 137, 138

 flag 106,
136, 138, 140, 141

 flag 136, 138, 140,
141

 flag 140
 flag 138, 140

 function 106, 138
 function 142

 function 106, 136
 function 137

 function 139, 171
 function 141, 142, 284

 function 139

ptg

602 I N D E X

Heaps 134–143
growable and nongrowable 137
synchronizing 284

 function 140
 function 142, 284

 function 142
 function 142

247
 data item 62

 handle 171
 registry keys 88
 function 418
 function 418

huge files 60

I
I/O

alertable 492
asynchronous 482
completion ports 316, 505–509
console 40–53
extended 492–495
overlapped 447, 483–486
standard 40, 51, 188

247
Implicit linking 168–170

 flag 416
Inheritance, handles 191

 function 521, 526

function 362

function 265, 269, 309

 function 271

function 523
 function 524

 function 310, 318,
319

 function 531
 function 532

In-process servers 434
Interfaces, exporting and importing 169–

170
Interlocked functions 265, 296–297

function 297
 function 265

 function 296

 function 296
 function 265

Internet protocol 414
Interprocess communication (IPC)

one-way 188
two-way 384–392

134, 387, 506
414

IP address 416
IPC see Interprocess communication

 function 535

function 535
 function 535

J
Job

management 205
objects 214–215

displaying active jobs program 211
new job information function 209
process ID program 212

 program run 216

background job program 206
program run 213

K
Kernel objects 8, 541
Key handle 89

 flag 89
 flag 89

 flag 89
 flag 89

L
202

Microsoft C data type 62
 statement 114

 function 270
Linking

explicit 170–172
implicit 168–170
run-time 170–172

Linux xxvii
 function 416

 function 171
 function 171

Local storage 266

ptg

I N D E X 603

 function 73
 flag 82

 flag 82
 function 81–82

 locate the server function 407
 data type 62

 function 523–524
 data item 62

 prefix 29
 prefix 30
 prefix 29

 type 35
 program 530

listing Registry program 92
program run 96

file listing program 75
program run 78

M
 flag 404

Mailslots 401–405
 service entry program 455

 function 543
 function 543

 macro 413
 C library function 143

Managing directories 50–51
Mapping, file 152–155

 function 84, 152
 function 152

Master-slave scheduling 255
 buffer length 51, 74

195
 mask 109

Memory architecture 263
Memory barrier 263–268, 278
Memory block in heap 140
Memory management 131–134

performance 297
Memory map size 152
Memory-mapped files 131, 149–155

 type 422
Message waiting 294
Microsoft Visual C++ 547

 UNIX function 392
 UNIX function 154
 UNIX argument 32
 word 51

Models
boss/worker 236–237
client/server 236, 384
condition variable (CV) 337–342
pipeline 236
producer/consumer 331, 340
threading 236–243
work crew 236

 function 48–49
 flags 49

 function 48–49
Moving

directories 46–49
files 46–49

 flag 421

function 294
492

Multiple threads 340
Multiprocessor 5, 181, 201, 215
Multistage pipeline program 354

 UNIX function 154
Mutex 279–284, 336

granularity 295
guidelines 294

Mutual exclusion object 279–284

N
Named

pipes 384–392
sockets 416

Naming
conventions 9
directories 27–28
drives 27
files 27–28

 named pipe flags 391
Nongrowable heap size 136

 flag 247
NT File System (NTFS) 26
NT services 453

O
Objects 195

waiting for 294
 word 82, 484

 word 82, 152, 484
Open systems 6–7

 UNIX function 32
 flag 30

ptg

604 I N D E X

 flag 30
 UNIX function 74

 function 151
Opening files 28–31

 function 280
 function 190

 function 467
 function 284

 function 469
 function 229

 function 502
Operating systems

functionality 1–5
standards 6–7

 function 41
Overlapped I/O 447, 483–486

 structure 82, 484–485
536

P
 flag 150

 flag 150
 flag 150

Paging files 135
Parallelism, program 244

 environment variable 187
Pathnames 27–28

 function 392
Peer-to-peer scheduling 255
Performance 297, 302–303
Periodic signal program 503
Permissions 527–528

 C library function 16
 flag 414

 flags 386
Pipeline model 236
Pipes

anonymous 380
named 384–392
summary 405

Pointers
based 161, 162
file 60–62

POSIX xxvii, 5–7, 549–555

function 508
Predefined data types 8

 program 54
 function 53

Priority and scheduling 246–249

Process
components 181–182
console 185
creation 183–186
environment 195
handle inheritance 188–189
identities 190–191
priority 185
priority and scheduling 246–249
single 195
synchronization 194–195, 268–293
waiting for completion 194–195

 flags 190, 191, 247
 structure 186,

190
 function 529

Processor affinity 318, 329–331
Producer and consumer program 274
Producer/consumer model 331, 340
Program event logging 461
Program parallelism 244

 Pthreads functions 231, 281,
288, 311, 339

Pthreads 362
application portability 372
condition variables 288, 339
in POSIX 230, 256, 280
open source implementation 376

 function 288, 338, 340

program 55
program run 56
UNIX command 55

Q
 C library function 159

 data item 62

function 215
 function 471

 queue management
functions 349, 363

Queues
definitions 348
in a multistage pipeline 352–354
management functions 349, 363
object 348–349

 function 367

ptg

I N D E X 605

R
Race conditions 267

 function 110–113
 UNIX function 33

 function 52, 55
 UNIX function 74

 function 32–33, 380, 386, 483
 function 493

 program 537
Reading files 32–33

 C library function 143
247

 function 423

program 66
program run 69

 function 420
 function 446
 program run 383

524
 flags 91

 registry data type 92
 registry data type 92

 registry data type 92
 registry data type 92

 function 89
 function 90

 function 91
 function 92

 command 86
 function 90
 function 91

 function 92
Registry 86–88

key management 89–91
 function 89

 function 92
 function 92

 function 280
 function 285, 342

function 311
 function 310

 function 49

function 128
 function 31

program 39
 function 112

 function 288
 function 185, 230

Run-time linking 170–172

S
SACL see System ACLs
SANs see Storage area networks

 UNIX function 137
Scheduling 255
SCM see Service Control Manager
Searching for a file 70–71

 flag 150
Secure Socket Layer 434
Secure Sockets Layer 451
Security

attributes 531
attributes initialization program 532
identifiers (SIDs) 523–525
kernel object 541
user object 541
Windows objects 519

Security descriptors 520–527, 542–543
reading and changing 535–537

 structure 188,
519–520

 structure 522
SEH see Structured Exception Handling
Semaphore 284–287, 342
Semaphore Throttle 313–315

 function 420
 program 443
 program 438

 function 446
Sequential file processing 13

 program 510

program 395
program run 400

Servers, in-process 434

program 427
program run 433

Service Control Manager (SCM) 454
 flag 469
 flag 469

 flag 469
 structure 457–459

 object 456
 flag 469

 array 455

ptg

606 I N D E X

 functions 455–460
Services

control handler 460–461
control handler registration 456
control manager 454
control program 472
controlling 470
controls 460
creating 468–469
debugging 477
deleting 468–469
opening 467
setting status 456
starting 469
state 459
status query 471
type 458
wrapper program 462

program 472
program run 476

 function 455
 function 457

 word ??–458
 function 124

 function 51–52

function 271, 309
 function 50

 function 64
 function 196

 function 288, 340
 function 73

 function 60, 61, 62, 485
 function 535

 function 72
 function 73

function 214

function 541
 function 404

function 387
 function 247

function 541
 function 250,

330

function 523

function 527

function 525

function 521

function 543
 function 457

 function 40
 function 330

function 250
 function 248

249
Setting directories 50–51

 function 502
Shared

memory in UNIX 154
variables 271–273

 function 417
SID management 543

 flag 524
SIDs see Security identifiers
Signaled state 230
Signaling producer and consumer

program 290
 (SOAW)

function 337, 339, 342–344, 492
Signals 125, 185

in UNIX 113
 program 274
 program run 277

operation 476
 program 462
 program run 466

 listing 467
64-bit file addresses 59–60

 function 202
 function 253

function 362

function 363
 function 494

ptg

I N D E X 607

Slim Reader/Writer (SRW) Locks 309–311
 comparison 310

SMP see Symmetric multiprocessing
SOAW see

 flag 445
 structure 415

 structure 416
 function 414

 flag 415, 420
Socket-based

client program 424
server program 427

Sockets
Berkeley 412, 447
binding 415–416
client functions 419–422, 423
closing 417
connecting to client 417
connecting to server 419–420
creating 414
disconnecting 417
initialization 413
message receive 422–423
server functions 414–419, 426

 UNIX command 143

binary search tree program 145
program run 148

program 159
program run 161

based pointers program 163
creating the index program 165
program run 166

merge-sort program 239
program run 242, 243

Sparse file 64
Spin Counts 271, 297, 308–309

 mailslot client program 406
SRW see Slim Reader/Writer

 data type 136
SSL see Secure Sockets Layer
Stack unwind 116
Standard

I/O 40, 51, 188
input 188

 function pointer 227
 flag 185

 function 470

function 454
 UNIX function 74

 data structure 337

program run 315
thread statistics program 303

 program run 322
 program run 305, 312

Status functions for named pipes 387
 exception

code 141
 exception code 106,

141
 flag 40
 flag 40

 flag 40
 process status 193, 229

Storage area networks (SANs) 26
Storage, local and global 266
Strings, environment 195–196
Structured Exception Handling

(SEH) 101–102, 117
Structures, overlapped 484–485

 function 230
Symmetric multiprocessing (SMP) 181,

264

 queue definitions 348
 threshold barrier definitions

program 345
Synchronization 246–249

heap 284
objects 492
performance impact 302–303
processes 194–195
processes and threads 268–293

 flag 190
synchronous cancellation 371
System

ACLs (SACLs) 520, 543
error codes 19
include files 9

 function 73

T
35

 type 34
TCP/IP 412, 414

ptg

608 I N D E X

Temporary file names 74
 function 193, 205

 function 228, 230
Termination handlers 113–117

program run 347
 test program 345

 threshold barrier handle 344
 threshold barrier implementa-

tion program 345
Thread Local Storage (TLS) 182, 225, 245–

246
Thread pool 312–323
Thread stack 372

flag 248
 flag 248

 flags 248
 thread argument 228

Threadpool timers 505
Threads

common mistakes 251–252
creating 226–228
file locking 81–86
identity 229
local storage (TLS) 225
models 236–243
overview 223–224
primary 184
priority and scheduling 246–249
resuming 229–230
single 181–182
states 249–251
statistics program 303
storage 225–226, 245–246
suspending 229–230
synchronization 246–249, 268–293
terminating 228
waiting for termination 230
with asynchronous I/O 500–501
with the C library 231–232

Thread-safe
code 259–268
DLL program 438
DLL program with state structure 443
libraries 232

 multistage pipeline
program 354

 program run 360
 program run 361

 program run 366
Threshold barrier object 344–348

 UNIX command 202
 program 503

Timed waits 252

performance 575
process times program 203

Timers
waitable 501–503

TLS see Thread Local Storage
 flag 245

 function 246
 function 246

 function 246
 function 246

 function 36

program 79
program run 79

program 118
program run 120

 function 390, 483
 flag 30

102

function 270
Try-except blocks 102–104, 113–116
Try-finally blocks 113–116

U
UCT see Universal Coordinated Time
UDF see Universal Disk Format

 data type 62
Unicode 34–36
Unicode UTF-16 34
Universal Coordinated Time (UCT) 72
Universal Disk Format (UDF) 26

 UNIX function 49
 function 83

 function 153
Unwinding stacks 116

 UNIX function 74

V
 C library function 53
 C library function 53

 C library function 53
Value management 91–92

ptg

I N D E X 609

Variables, environment 195–196
128

 exercise run 180
Virtual

address space 132
memory manager 133
memory space allocation 152

Visual C++ 9, 22
 storage modifier 262, 265, 374

W
Wait

for messages and objects 294
functions 494–495

 return value 195, 281
 return value 195

 return value 195
 return value 195

Waitable timers 501–503
 function 194–

195, 230, 279, 288

function 494
 function 194–

195, 230, 279
 function 494

Waiting for a process 194–195
 function 388

function 363

 function 363
36

 type 34
Win16 compatibility 9

 file 9, 541
Windows

API 2
condition variables 362–365
principles 7–9
sockets 412, 447, 448
support 5, 181
versions 3

Windows 2003 Server 31
 file 18, 9

 file 9, 29, 107, 195
Winsock 411

API 412
Initialization 413

Work crew model 236
 UNIX function 33

 permission 536
 function 52

 function 33, 483
 function 493

Writing files 33
413

 function 413
 structure 413

 function 413
 function 413

ptg

This page intentionally left blank

	Contents
	Figures
	Tables
	Programs
	Program Runs
	Preface
	About the Author
	CHAPTER 1 Getting Started with Windows
	Operating System Essentials
	Windows Evolution
	Windows Versions
	The Windows Market Role
	Windows, Standards, and Open Systems
	Windows Principles
	32-bit and 64-bit Source Code Portability
	The Standard C Library: When to Use It for File Processing
	What You Need to Use This Book
	Example: A Simple Sequential File Copy
	Summary
	Exercises

	CHAPTER 2 Using the Windows File System and Character I/O
	The Windows File Systems
	File Naming
	Opening, Reading, Writing, and Closing Files
	Interlude: Unicode and Generic Characters
	Unicode Strategies
	Example: Error Processing
	Standard Devices
	Example: Copying Multiple Files to Standard Output
	Example: Simple File Encryption
	File and Directory Management
	Console I/O
	Example: Printing and Prompting
	Example: Printing the Current Directory
	Summary
	Exercises

	CHAPTER 3 Advanced File and Directory Processing, and the Registry
	The 64-Bit File System
	File Pointers
	Getting the File Size
	Example: Random Record Updates
	File Attributes and Directory Processing
	Example: Listing File Attributes
	Example: Setting File Times
	File Processing Strategies
	File Locking
	The Registry
	Registry Management
	Example: Listing Registry Keys and Contents
	Summary
	Exercises

	CHAPTER 4 Exception Handling
	Exceptions and Their Handlers
	Floating-Point Exceptions
	Errors and Exceptions
	Example: Treating Errors as Exceptions
	Termination Handlers
	Example: Using Termination Handlers to Improve Program Quality
	Example: Using a Filter Function
	Console Control Handlers
	Example: A Console Control Handler
	Vectored Exception Handling
	Summary
	Exercises

	CHAPTER 5 Memory Management, Memory-Mapped Files, and DLLs
	Windows Memory Management Architecture
	Heaps
	Managing Heap Memory
	Example: Sorting Files with a Binary Search Tree
	Memory-Mapped Files
	Example: Sequential File Processing with Mapped Files
	Example: Sorting a Memory-Mapped File
	Example: Using Based Pointers
	Dynamic Link Libraries
	Example: Explicitly Linking a File Conversion Function
	The DLL Entry Point
	DLL Version Management
	Summary
	Exercises

	CHAPTER 6 Process Management
	Windows Processes and Threads
	Process Creation
	Process Identities
	Duplicating Handles
	Exiting and Terminating a Process
	Waiting for a Process to Terminate
	Environment Blocks and Strings
	Example: Parallel Pattern Searching
	Processes in a Multiprocessor Environment
	Process Execution Times
	Example: Process Execution Times
	Generating Console Control Events
	Example: Simple Job Management
	Example: Using Job Objects
	Summary
	Exercises

	CHAPTER 7 Threads and Scheduling
	Thread Overview
	Thread Basics
	Thread Management
	Using the C Library in Threads
	Example: Multithreaded Pattern Searching
	Performance Impact
	The Boss/Worker and Other Threading Models
	Example: Merge-Sort—Exploiting Multiple Processors
	Introduction to Program Parallelism
	Thread Local Storage
	Process and Thread Priority and Scheduling
	Thread States
	Pitfalls and Common Mistakes
	Timed Waits
	Fibers
	Summary
	Exercises

	CHAPTER 8 Thread Synchronization
	The Need for Thread Synchronization
	Thread Synchronization Objects
	CRITICAL_SECTION Objects
	A CRITICAL_SECTION for Protecting Shared Variables
	Example: A Simple Producer/Consumer System
	Mutexes
	Semaphores
	Events
	Example: A Producer/Consumer System
	More Mutex and CRITICAL_SECTION Guidelines
	More Interlocked Functions
	Memory Management Performance Considerations
	Summary
	Exercises

	CHAPTER 9 Locking, Performance, and NT6 Enhancements
	Synchronization Performance Impact
	A Model Program for Performance Experimentation
	Tuning Multiprocessor Performance with CS Spin Counts
	NT6 Slim Reader/Writer Locks
	Thread Pools to Reduce Thread Contention
	I/O Completion Ports
	NT6 Thread Pools
	Summary: Locking Performance
	Parallelism Revisited
	Processor Affinity
	Performance Guidelines and Pitfalls
	Summary
	Exercises

	CHAPTER 10 Advanced Thread Synchronization
	The Condition Variable Model and Safety Properties
	Using SignalObjectAndWait
	Example: A Threshold Barrier Object
	A Queue Object
	Example: Using Queues in a Multistage Pipeline
	Windows NT6 Condition Variables
	Asynchronous Procedure Calls
	Queuing Asynchronous Procedure Calls
	Alertable Wait States
	Safe Thread Cancellation
	Pthreads for Application Portability
	Thread Stacks and the Number of Threads
	Hints for Designing, Debugging, and Testing
	Beyond the Windows API
	Summary
	Exercises

	CHAPTER 11 Interprocess Communication
	Anonymous Pipes
	Example: I/O Redirection Using an Anonymous Pipe
	Named Pipes
	Named Pipe Transaction Functions
	Example: A Client/Server Command Line Processor
	Comments on the Client/Server Command Line Processor
	Mailslots
	Pipe and Mailslot Creation, Connection, and Naming
	Example: A Server That Clients Can Locate
	Summary
	Exercises

	CHAPTER 12 Network Programming with Windows Sockets
	Windows Sockets
	Socket Server Functions
	Socket Client Functions
	Comparing Named Pipes and Sockets
	Example: A Socket Message Receive Function
	Example: A Socket-Based Client
	Example: A Socket-Based Server with New Features
	In-Process Servers
	Line-Oriented Messages, DLL Entry Points, and TLS
	Example: A Thread-Safe DLL for Socket Messages
	Example: An Alternative Thread-Safe DLL Strategy
	Datagrams
	Berkeley Sockets versus Windows Sockets
	Overlapped I/O with Windows Sockets
	Windows Sockets Additional Features
	Summary
	Exercises

	CHAPTER 13 Windows Services
	Writing Windows Services—Overview
	The main() Function
	ServiceMain() Functions
	The Service Control Handler
	Event Logging
	Example: A Service “Wrapper”
	Managing Windows Services
	Summary: Service Operation and Management
	Example: A Service Control Shell
	Sharing Kernel Objects with a Service
	Notes on Debugging a Service
	Summary
	Exercises

	CHAPTER 14 Asynchronous Input/Output and Completion Ports
	Overview of Windows Asynchronous I/O
	Overlapped I/O
	Example: Synchronizing on a File Handle
	Example: File Conversion with Overlapped I/O and Multiple Buffers
	Extended I/O with Completion Routines
	Example: File Conversion with Extended I/O
	Asynchronous I/O with Threads
	Waitable Timers
	Example: Using a Waitable Timer
	I/O Completion Ports
	Example: A Server Using I/O Completion Ports
	Summary
	Exercises

	CHAPTER 15 Securing Windows Objects
	Security Attributes
	Security Overview: The Security Descriptor
	Security Descriptor Control Flags
	Security Identifiers
	Managing ACLs
	Example: UNIX-Style Permission for NTFS Files
	Example: Initializing Security Attributes
	Reading and Changing Security Descriptors
	Example: Reading File Permissions
	Example: Changing File Permissions
	Securing Kernel and Communication Objects
	Example: Securing a Process and Its Threads
	Overview of Additional Security Features
	Summary
	Exercises

	APPENDIX A: Using the Sample Programs
	Examples File Organization

	APPENDIX B: Source Code Portability: Windows, UNIX, and Linux
	Source Code Portability Strategies
	Windows Services for UNIX
	Source Code Portability for Windows Functionality
	Chapters 2 and 3: File and Directory Management
	Chapter 4: Exception Handling
	Chapter 5: Memory Management, Memory-Mapped Files, and DLLs
	Chapter 6: Process Management
	Chapter 7: Threads and Scheduling
	Chapters 8–10: Thread Synchronization
	Chapter 11: Interprocess Communication
	Chapter 14: Asynchronous I/O
	Chapter 15: Securing Windows Objects

	APPENDIX C: Performance Results
	Test Configurations
	Performance Measurements
	Running the Tests

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

